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Abstract

We consider equilibrium timing decisions in a model with a large number of

players and informational externalities. The players have private information about

a common payo¤ parameter that determines the optimal time to invest. They learn

from each other in real time by observing past investment decisions. We develop

new methods of analysis for such large games, and we give a full characterization of

symmetric equilibria. We show that the equilibrium statistical inferences are based

on an exponential learning model. Although the beliefs converge to truth, learning

takes place too late. Ex-ante welfare is strictly between that without observational

learning and that with full information.

1 Introduction

This paper analyzes a large game of timing where the players are privately informed

about a common payo¤ parameter that determines the optimal time to stop the game.

The players observe in real time each other�s stopping decisions. We assume that the

game has a pure informational externality, i.e. the payo¤ of an individual player does

not depend directly on the timing decisions of the other players. We analyze the game in

continuous time, and we show how extreme order statistics of the private signals determine

equilibrium behavior.

For concreteness, one may interpret the stopping decision as an irreversible investment

decision as in the literature on real options. An unknown state variable determines the

optimal investment time. The players choose when to invest, and all past investment

�We would like to thank Jacob Goeree, Nicolas Klein, Carlos Oyarzun, Sven Rady, Lones Smith, an

associate editor, two referees, and numerous seminar audiences for helpful comments.
yDepartment of Economics, Aalto University, and HECER pauli.murto@aalto.�.
zDepartment of Economics, Aalto University, and HECER juuso.valimaki@aalto.�.

1



decisions are publicly observable. When deciding whether to invest now or later, a �rm

takes into account information contained in the other �rms�actions. Since the payo¤

relevant parameter is common to all the players, the equilibrium timing decisions are

complementary. Delayed investment by other �rms indicates less favorable conditions for

early investment whereas early investment by other �rms encourages immediate invest-

ment. To put it simply, the �rst �rm to invest must always worry about the fact that

others have not invested yet. The key question is how the individual players balance the

bene�ts from observing other players�actions with the costs of delay. We analyze how

this tension is resolved in the time distribution of the �rms�investments.

More speci�cally, the model is as follows. The �rst-best time to invest is common

to all players and depends on a single state variable !. Each player has a noisy private

signal about !. The informational setting is standard for social learning models: The

players�private signals are assumed to be conditionally i.i.d. given ! and to satisfy the

monotone likelihood ratio property. The payo¤s are assumed to be either supermodular or

log-supermodular in ! and the investment time t. These assumptions ensure a monotonic

relationship between a signal and the optimal timing decision based on the signal.

Modeling observational learning in a timing game raises the following issue. When a

player invests, the other players�information sets change. As a result, players may want

to react immediately to other players�decisions. It is well known that continuous time

can be problematic in this respect. An obvious approach is to use discrete time.1 The

drawback of that approach is that it requires complicated limiting procedures if one wants

to eliminate the in�uence of decision lags induced by the discrete periods. In this paper,

we avoid this by modeling the dynamic game as a multi-stage game with continuous

action sets.

The multi-stage timing game works as follows. At the beginning of each stage, all

the remaining players choose their investment time from the real line. The stage ends

at the minimum of these stopping times. This minimum stopping time and the identity

of the player(s) that chose it are publicly observed. The remaining players update their

beliefs with this new information and start immediately the next stage. This leads to a

dynamic recursive game with �nitely many stages (since the number of players is �nite).

Since the stage game strategies are simply functions from the type space to non-negative

real numbers, the game and its payo¤s are well de�ned. Quick reactions to other player�s

investments are captured by allowing investment at time zero of the next stage. While

it is well known that for some stopping games with payo¤ externalities the existence

of a stage game equilibrium is problematic in the continuous action variable case, such

di¢ culties do not arise in our game where all externalities are informational.2

1We adopted that approach in a related paper Murto & Välimäki (2011). We discuss the relationship

of that paper to the current one at the end of this section.
2An early example of such existence problems appears in Fudenberg & Tirole (1985). With private

2



We show that the game has symmetric equilibria in monotone strategies. Our charac-

terization result describes a simple method for calculating the optimal decision for each

player in the most informative symmetric equilibrium of the game. The key simplifying

feature is that while a player takes at each time instant fully into account the informa-

tion that she has learnt from the past, in equilibrium her decision is not a¤ected by the

information that she anticipates to learn in the future. As a result, equilibrium strategy

of a player is her optimal stopping time under the assumption that her own signal is the

most extreme (that is, favoring early investment) amongst those players that have not yet

invested. We show that sometimes the game has also less informative equilibria where all

the players invest immediately regardless of their signals.

Our main results concern the limit where the number of players increases towards

in�nity. A well-known result in Gnedenko (1943) implies that the appropriately normal-

ized kth order statistic in the sample of signals converges in distribution to the sum of

independent exponential variables with the parameter determined by the density of the

signals at the lower bound of their support. Based on that insight, we show that equilib-

rium inferences in the limiting model are based on statistical inference on exponentially

distributed random variables. This observation remains valid for all large Bayesian games

where equilibrium behavior depends on extreme order statistics. We demonstrate this for

common value auctions with large numbers of bidders.

Statistical inference in our model is unbiased, but the problem from the players�per-

spective is that time runs only forward in a dynamic game. Since the players cannot

roll back the clock, it is possible that they may have to invest too late relative to their

updated beliefs. Obviously the possibility of waiting implies that players do not have to

invest too early. This leads to the following results: i) Almost all the players invest too

late. ii) Almost all the players invest at the same time. iii) This moment of investment

is random conditional on true state. In other words, even though pooled information is

perfectly accurate in the large game limit, most of the players end up investing in a big

herd that takes place too late and at a random moment.

We show that although part of the potential value of social learning is dissipated

through (socially) excessive waiting, the players are ex-ante better o¤ in the informative

equilibrium than they would be in isolation from other players. In other words, obser-

vational learning improves on average the players�timing decisions. Intuitively, as long

as the state remains uncertain, actions are taken by those players that have the most

extreme signals. The players with less extreme signals bene�t from the information that

this generates: they prefer to wait and see how uncertainty resolves before taking any

actions themselves.

Related Literature

information, equilibrium existence is less problematic than in complete information settings. This can

be easily demonstrated in two-player games with a �rst mover advantage.
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This paper is closely related to our earlier paper Murto & Välimäki (2011). In that

paper, we analyzed a timing game, where players choose when to stop experimenting

on bandit processes whose parameters are correlated across players. We already demon-

strated in that paper how information is revealed in sudden bursts of activity. Due to

the special payo¤ structure of that game, social learning had no welfare consequences in

that model. The current paper shows that once we consider private signals followed by

pure observational learning, we can characterize the symmetric equilibria in a much more

general environment in terms of information, payo¤s, and state space. This identi�es

the forces behind the qualitative features found in Murto & Välimäki (2011) and at the

same time allows us to address welfare consequences of social learning. In the process,

we develop technical tools for analyzing the asymptotic properties of equilibrium directly

based on extreme order statistics.

More broadly, this paper belongs to a stream of literature that started with models

of herding by Banerjee (1992) and Bikhchandani, Hirshleifer & Welch (1992). Those

early papers assumed an exogenous order of moves for the players. Like us, Grenadier

(1999) relaxes this assumption in order to address observational learning in a model

of investment. However, in his model players are exogenously ranked in terms of the

informativeness of their signals, and this ranking is common knowledge. This assumption

plays a role similar to the assumption of exogenous order of moves, and as a result, the

model features information cascades through a mechanism similar to Banerjee (1992) and

Bikhchandani, Hirshleifer & Welch (1992). By contrast, we assume that the players are

ex-ante identical, and this leads to qualitatively di¤erent pattern of information revelation.

Our model has no information cascades, but information is revealed ine¢ ciently late.

The most closely related paper is the investment model by Chamley & Gale (1994).3

The key di¤erence is that Chamley & Gale (1994) has a payo¤ function with �rst-best

investment timing either immediately or never, while we allow the state of nature to

determine the optimal timing more smoothly, yet capturing Chamley & Gale (1994) as a

special case. In other words, they model uncertainty over whether or not it is optimal to

invest, while we model uncertainty over when (if ever) it is optimal to invest. With the

payo¤ structure used in Chamley & Gale (1994), uncertainty is resolved immediately but

incompletely at the start of the game whereas our model features gradual information

aggregation over time. Section 7 discusses in more detail the relationship between these

models.

Moscarini & Squintani (2010) analyze a two-�rm R&D race where the inference on

common values information is similar to our model. The equilibrium shares with ours the

property that the stopping decision by one player may make another player regret that she

3See also Chamley (2004) for a more general model. Levin & Peck (2008) extends this type of a model

to allow private information on the stopping cost. In contrast to our model, information is of the private

values type in their model.
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did not stop earlier. Other than that, the results and the analysis in the two papers are

quite di¤erent. Moscarini & Squintani (2010) focus on the strategic interaction between

two players in a model with payo¤ externalities, whereas our focus is on information

aggregation in large games without informational externalities.

It is also instructive to contrast the information aggregation results in our context with

those in the auctions literature. In a kth price auction with common values, Pesendorfer

& Swinkels (1997) show that information aggregates e¢ ciently as the number of objects

grows with the number of bidders. Kremer (2002) further analyzes informational proper-

ties of large common values auctions of various forms. In our model, in contrast, the only

link between the players is through the informational externality, and that is not enough

to eliminate the ine¢ ciencies. The persistent delay in our model indicates a failure of

information aggregation even for large economies. On the other hand, Bulow & Klem-

perer (1994) analyzes an auction model that features "frenzies" that resemble equilibrium

stopping behavior in our model. In Bulow & Klemperer (1994) those are generated by

direct payo¤ externalities arising from scarcity, whereas our equilibrium dynamics relies

on a purely informational mechanism.

The paper is structured as follows. Section 2 introduces the basic model. Section 3

establishes the existence of a symmetric monotonic equilibrium. Section 4 analyzes the

statistical inference problem with a large number of players, and Section 5 analyzes the

equilibrium properties in the large game limit. Section 6 presents a quadratic example of

the model. Section 7 compares our results to closely related literature and presents some

extensions of the basic model. Section 8 concludes.

2 Model

2.1 Payo¤s and signals

N players consider investing in a project. The payo¤ for player i from an investment at

time ti depends on the state ! 2 
, and is given by function

v : T � 
! R.

The state space is a closed subset of the extended real line 
 � [0;1], and can
be either �nite or in�nite. The players choose their investment time t from the set

T = [0;1]. In order to make sure that optimal choices are well de�ned, we make the
following assumption:

Assumption 1 The payo¤ function v (t; !) is continuous and bounded on T � 
. In
particular,

lim
t!1

v (t; !) = v (1; !) <1 for all ! 2 
:

5



Furthermore, if 1 2 
, then

lim
!!1

v (t; !) = v (t;1) <1 for all t 2 T .

The players share a common prior p0 (!) on 
 and choose the timing of their invest-

ment in order to maximize their expectation of v. We assume the following:

Assumption 2 The payo¤ function v (t; !) is piecewise continuously di¤erentiable in t
for all !. For each !, there is a unique t 2 [0;1], denoted by t� (!), that maximizes
v (t; !). Furthermore, v (t; !) is either strictly supermodular, or strictly log-supermodular

in (t; !).

The key implication of the assumption of strict (log-)supermodularity is that the

unique maximizer of v (t; !) must be strictly increasing in !. Examples include: i)

Bounded state space4 and quadratic loss relative to optimal time ! : v(t; !) = � (t� !)2 :
ii) Discounted model of costly investment where the market becomes pro�table at random

time ! : v (t; !) = e�rmaxft;!g � Ce�rt, where 0 < C < 1 is a parameter, and 0 < r. iii)
"Now or never": a special case of ii) with state space 
 = f0;1g. iv) Discounted costly
investment in a market growing at rate � < r: v (t; !) = e�rt (e�t � !) :5

The players are initially privately informed about !. Player i observes a signal �i 2
� = [0; 1]. G (�; !) is the joint probability distribution on � � 
: We assume that the
distribution is symmetric across i, and that signals are conditionally i.i.d. Furthermore,

we assume that the conditional distributions G(� j !) and corresponding densities g(� j !)
are well de�ned and have full support for all !. We also assume that for all !, G(� j !)
is continuous (i.e., there are no mass points) and g(� j !) has at most a �nite number of
points of discontinuity and is continuous at � = 0.

The signals in the support of the signal distribution satisfy monotone likelihood ratio

property (MLRP):

Assumption 3 For all i, �0 > �, and !0 > !,

g(�0 j !0)
g(� j !0) �

g(�0 j !)
g(� j !) : (1)

Assumptions 2 and 3 together allow us to conclude that the optimal stopping time

conditional on a signal is monotonic in the signal realization. That is, player i�s optimal

stopping time is increasing in her own type as well as in the type of any other player j.

Finally, we make an assumption for the signal densities at the lower end of the signal

distribution. This assumption has two purposes. First, we want to make sure that the

signals can distinguish di¤erent states. This is guaranteed by requiring g (0 j! ) 6= g (0 j!0 )
4To keep payo¤ bounded, choose some t > max
 and let v (t; !) = v

�
t; !
�
for t > t.

5A variant of this model with a stochastic state variable will be discussed in Section 7.3.
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whenever ! 6= !0 (note that assumption 3 alone allows conditional signal densities that are
identical in two di¤erent states). Second, we want to rule out the case where some players

can infer perfectly the true state from observing their own signal. This is guaranteed by

requiring 0 < g (0 j! ) < 1 for all ! 2 
. While none of the players can infer the

true state based on their own signal, the assumption of conditionally independent signals

and MLRP together guarantee that the pooled information held by the players becomes

arbitrarily informative as the number of players tends to in�nity.

Assumption 4 For all !; !0 2 
, !0 > !,

0 < g (0 j!0 ) < g (0 j! ) <1.

2.2 Strategies and information

We assume that at t, the players know their own signals and the past decisions of the

other players. We do not want our results to depend on any exogenously set observation

lag. Therefore, we allow the players to react immediately to new information that they

obtain by observing that other players stop the game. To deal with this issue in the

simplest manner, we model the game as a multi-stage stopping game as follows.

The game consists of a random number of stages with partially observable actions.

In stage 0; all players choose their investment time � i (h0; �i) � 0 depending on their

signal �i: The stage ends at t0 = mini � i (h
0; �i) : At that point, the set of players that

invest at t0, i.e. S0 = fi : � i(h0; �i) = t0g is announced. The actions of the other
players are not observed. The public history after stage 0 and at the beginning of stage

1 is then h1 = (t0;S0) : The vector of signals � and the stage game strategy pro�le
� (h0; �) = (� 1 (h

0; �1) ; :::; �N (h
0; �N)) induce a probability distribution on the set of

histories H1. The public posterior on 
 (conditional on the public history only) at the

end of stage 0 is given by Bayes�rule:

p1
�
!
��h1 � = p0 (!) Pr (h1 j! )R



p0 (!0) Pr (h1 j!0 ) d!0 :

As soon as stage 0 ends, the game moves to stage 1, which is identical to stage 0

except that the set of active players excludes those players that have already stopped.

Once stage 1 ends, the game moves to stage 2, and so forth. Stage k starts at the point in

time tk�1 where the previous stage ended. The players that have not yet invested choose

an investment time � i(hk; �i) � tk�1. We let N k denote the set of players that are still

active at the beginning of stage k (i.e., players that have not yet stopped in stages k0 < k).

The public history available to the players is

hk = hk�1 [
�
tk�1;Sk�1

�
:
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The set of stage k histories is denoted byHk, and the set of all histories byH := [kHk.

We denote the number of players that invest in stage k by Sk and the cumulative number

of players that have invested in stage k or earlier by Qk :=
Pk

i=0 S
k.

A pure behavior strategy for stage k is a function

� ki : H
k ��! [tk�1;1];

and we also de�ne the strategy � i (h; �) on the set of all histories by:

� i (h; �) = �
k
i (h; �) whenever h 2 Hk:

The players maximize their expected payo¤. A strategy pro�le � = (� i; :::; �N) is a

Perfect Bayesian Equilibrium of the game if for all i and all �i and hk; � i(hk; �i) is a best

response to ��i:

3 Monotonic symmetric equilibrium

In this section, we analyze symmetric equilibria in monotonic pure strategies.

De�nition 1 A strategy � i is monotonic if for all k and hk, � i
�
hk; �

�
is (weakly) in-

creasing in �.

With a monotonic symmetric strategy pro�le, the players stop the game in the in-

creasing order of their signal realizations. Therefore, at the beginning of stage k, it is

common knowledge that all the remaining players have signals higher than �k, where:

�k := sup
�
�
���(hk�1; �) = tk�1	 : (2)

3.1 Informative equilibrium

We now characterize the symmetric equilibrium that maximizes information transmission

in the set of symmetric monotone pure strategy equilibria. Theorem 1 below states that

there is a symmetric equilibrium, where a player with the signal � stops at the optimal

time conditional on all the other active players having a signal at least as high as �.

The monotonicity of this strategy pro�le follows from MLRP. We call this pro�le the

informative equilibrium of the game.

To state the result, we de�ne the smallest signal among the active players at the

beginning of stage k:

�kmin := min
i2N k

�i.
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Theorem 1 (Informative equilibrium) The game has a symmetric equilibrium pro�le
� � in monotonic strategies, where the stopping time for a player with signal � at stage k

is given by:

� �
�
hk; �

�
:= min

�
arg max

t�tk�1
E
�
v (t; !)

��hk; �kmin = � �� . (3)

The proof is in the appendix, and it uses the key properties of � �
�
hk; �

�
stated in the

following Proposition:

Proposition 1 (Properties of informative equilibrium) The stopping time � �
�
hk; �

�
de�ned in (3) is increasing in �. Furthermore, for every hk, k � 1, there is some " > 0
such that along equilibrium path, � �

�
hk; �

�
= tk�1 for all � 2

�
�k; �k + "

�
.

Proof. Proposition 1 and Theorem 1 are proved in the Appendix.

The equilibrium stopping strategy � �
�
hk; �

�
de�nes a time-dependent cuto¤ signal

��k (t) for all t � tk�1:

��k (t) := sup
�
�
��� � �hk; �� � t	 : (4)

In words, ��k (t) is the highest type that stops at time t in equilibrium. Proposition 1

implies that along the informative equilibrium path, ��k
�
tk�1

�
> �k for all stages except

possibly the �rst one. This means that all the players with a signal in the interval�
�k; ��k

�
tk�1

��
stop immediately at the beginning of the stage, and there is therefore a

strictly positive probability that many players stop simultaneously.

To understand the equilibrium dynamics in stage k, note that the cuto¤ signal ��k (t)

(i.e. the lower bound of the signals of the existing players) moves upward as time goes

by. As long as no player stops, this implies by MLRP and the (log)supermodularity of v

that the optimal stopping time conditional on current information moves forward for all

the remaining players. At the same time, the passage of time increases the relative payo¤

from stopping the game for each signal �. In equilibrium, ��k (t) increases at a rate that

balances these two e¤ects and keeps the marginal type indi¤erent.

As soon as stage k ends at tk > tk�1, the remaining players learn that one of the

other active players in stage k has a signal at the lower bound ��k
�
tk
�
. By MLRP and

the (log)supermodularity of v, the expected value from staying in the game falls by a

discrete amount. This means that the cuto¤ type moves discretely upwards and explains

why ��k+1
�
tk
�
> ��k

�
tk
�
= �k+1. As a result, each new stage begins with a positive

probability of immediate further exits. If at least one player stops so that tk+1 = tk, the

game moves immediately to stage k + 2. The preceding argument can be repeated until

there is a stage with no further immediate exits. Thus, the equilibrium path alternates

between stopping phases, i.e. consecutive stages k0 that end at tk
0
= tk

0�1 and that result
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in multiple simultaneous exits, and waiting phases where all players stay in the game for

time intervals of positive length.

Note that the random time at which stage k ends,

tk = � �
�
hk;min

i2N k
�i

�
;

is directly linked to the �rst order statistic of the player types remaining in the game at

the beginning of stage k. If we had a result stating that for all k, � �(hk; �i) is strictly

increasing in �i, then the description of the equilibrium path would be equivalent to

characterizing the sequence of lowest order statistics where the realizations of all previous

statistics is known. Unfortunately this is not the case since for all k > 1, there is a strictly

positive mass of types that stop immediately at tk = tk�1. This implies that the signals of

those players that stop immediately are imperfectly revealed in equilibrium. However, in

Section 5 we show that in the limit as the number of players is increased towards in�nity,

payo¤ relevant information in equilibrium converges to the payo¤ relevant information

contained in the order statistics of the signals.

3.2 Uninformative equilibria

Some stage games also have an additional symmetric equilibrium. In these equilibria,

all the players stop immediately irrespective of their signals. We call these equilibria

uninformative. They are similar to rush equilibria in Chamley (2004).

To understand when such uninformative equilibria exist, consider the optimal stopping

problem of a player who conditions her decision on history hk and her private signal �i,

but not on the other players having signals higher than hers. If t = tk�1 solves that

problem for all signal types remaining in the game, i.e., if

tk�1 2 arg max
t�tk�1

E
�
v (t; !)

��hk; �i = � � for all � � �k,
then an uninformative equilibrium may exist. If all players stop at t = tk�1 then they

learn nothing from each other. If they learn nothing from each other, then t = tk�1 is

their optimal action.

There are no other types of symmetric equilibria. Note �rst that any symmetric

equilibrium must be monotonic, otherwise a low signal player who stops later than a high

signal player would gain by mimicking the high type (or vice versa). Suppose that player

i with signal �i = � stops at some t > tk�1 in a symmetric equilibrium at stage k of the

game. Then t must be an optimal stopping time conditional on the information that i has

at time t about the other players. By strict (log-)supermodularity, a player with �j < �

should stop strictly earlier with this information, while a player with �j > � should stop

strictly later. It follows that in any symmetric equilibrium with t > tk�1; i chooses the
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best stopping time conditional on �j � � for all j 6= i. In other words, any best-response
t > tk�1 must be as in Theorem 1.6 The only possible symmetric equilibria are then the

uninformative equilibrium, where all the players stop at t = tk�1, and the informative

equilibrium de�ned in (3).

It should also be noted that some equilibria where all the players stop immediately

satisfy our criteria for informative equilibrium. If � �(hk; �) = tk�1 for all �, then the

continuation equilibrium is informative in our terminology even though all players stop

at once. At any such history hk, the players �nd it optimal to exit even if all the remaining

players had the highest possible signal. Similarly, with some payo¤ speci�cations there

are informative equilibria where all the players stop at t = 1 (which, in such a case, is

to be interpreted as delaying in�nitely). See discussion of such a case in Section 7.1.

In the least informative equilibrium, uninformative equilibrium is played in all stages

where the above criterion is satis�ed. There are also intermediate equilibria where after

some hk, players use � �
�
hk; �

�
de�ned in (3), and after other hk, they play uninformatively.

It is easy to rank the symmetric equilibria of the game. All symmetric equilibria in

the game take the form where � �
�
hk; �

�
is played in the �rst k� 1 stages, followed by an

uninformative equilibrium play in stage k (ending the game). For stage k; the informative

equilibrium payo¤exceeds the uninformative equilibrium payo¤. This follows immediately

from the observation that the uninformative equilibrium strategy is also available in the

informative equilibrium and gives the same payo¤ to i regardless of the strategies of

players j 6= i. It follows that the best symmetric equilibrium is the one where � �
�
hk; �

�
is played in all stages.

4 Statistical inference

In this section, we analyze statistical inference based on the extreme order statistics of

the players�signals as we increase the number of players towards in�nity. The �ndings

will be utilized in Section 5 where we analyze the informative equilibrium in the large

game limit.

To see why order statistics are important for our analysis, note that the informative

equilibrium strategy is monotonic in signals, and therefore the players stop in the ascend-

ing order of their signals. Hence, the real time instant at which the n:th player stops the

game is a function of the n lowest signal realizations amongst the players.

We start with a statistical observation regarding the distribution of extreme order

statistics in large samples (Section 4.1). We then show how this translates into optimal

stopping times (Section 4.2). Finally, we show how our �ndings can be utilized to obtain

6In Theorem 1, we have chosen the minimum of the best responses as an equilibrium strategy. This

choice is inconsequential for the expected payo¤s in the game.
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new results in other Bayesian games, in particular auctions (Section 4.3).

4.1 Extreme order statistics

Let e�Ni denote the ith order statistic in the game with N players:

e�Ni := min f� 2 [0; 1] j # fj 2 f1; :::; Ng j �j � �g = ig : (5)

It is clear that if we increase N towards in�nity while keeping n �xed, the n lowest

order statistics e�N1 ; :::;e�Nn converge to the lower bound 0 of the signal distribution in

probability. Therefore, we scale the order statistics by the number of players:

ZNi :=
e�Ni �N . (6)

Since ZNi is a deterministic function of e�Ni , it has the same information content ase�Ni . In the next proposition we record a known statistical result according to which ZNi
converge to non-degenerate random variables. This limit distribution, therefore, captures

the information content of e�Nn in the limit.
Proposition 2 For all n 2 N, the vector

�
ZN1 ; Z

N
2 � ZN1 ; :::; ZNn � ZNn�1

�
converges in

distribution to a vector of n independent exponentially distributed random variables with

parameter g (0 j !). That is,

lim
N!1

Pr
�
ZN1 � x1; ZN2 � ZN1 � x2; :::; ZNn � ZNn�1 � xn

�
= e�g(0j!)�x1 � ::: � e�g(0j!)�xn.

Proof. In the Appendix.
Proposition 2 states that in the limit as N ! 1, learning from the order statistics

is equivalent to sampling independent random variables from an exponential distribution

with an unknown state-dependent parameter g (0 j !). To get intuition for this result,
note that when N increases, the n lowest order statistics converge towards 0. Therefore,

the signal densities matter for the learning only in the limit � # 0, and hence one can think
of g (0 j !) as the intensity of the order statistics in the large game limit. This explains
why we have adopted the assumption that the signal density g (� j !) is continuous at
� = 0.

Note that ZNn = ZN1 +
�
ZN2 � ZN1

�
+ ::: +

�
ZNn � ZNn�1

�
, and therefore ZNn converges

to a sum of independent exponentially distributed random variables, which means that

its limiting distribution is Gamma:

Corollary 1 For all n;
ZNn

D! � (n; g (0 j !)) ;

where � (n; g (0 j !)) denotes gamma distribution with parameters n and g (0 j !).
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We have now seen that when N ! 1, observing the n lowest order statistics is
equivalent to observing n independent exponentially distributed random variables. Since

exponential distributions are memoryless, this means that observing only the nth order

statistic e�Nn is informationally equivalent to observing all order statistics up to n. To

see this important fact formally, denote by � (! j (z1; :::; zn)) the posterior probability
density of an arbitrary element ! 2 
 based on a realization (z1; z2 � z1; :::; zn � zn�1) of
independent exponential variables, and let � (! j zn) denote the corresponding posterior
probability based on the sample that contains only zn, the sum of the previous sample.7

Bayes�rule and simple algebra show that these posteriors are equal:

� (! j (z1; :::; zn)) =
�0 (!) �

nY
i=1

g (0 j !) e�g(0j!)(zi�zi�1)

R


�0 (!0) �

nY
i=1

g (0 j !0) g (0 j !0) e�g(0j!0)(zi�zi�1)d!0
(7)

=
�0 (!) � (g (0 j !))n e�g(0j!)znR



�0 (!0) � (g (0 j !0))n e�g(0j!0)znd!0 = � (! j zn) :

In the �nite model (away from the limit N ! 1), the posterior �N (! j (z1; :::; zn))
based on a sample ZN1 = z1; :::; Z

N
n = zn generally di¤ers from the posterior �N (! j zn)

that is based only on ZNn = zn. Nevertheless, Bayes�rule is continuous in the limit as

N ! 1 in (z1; :::; zn) since we assume g(� j !) to be continuous at � = 0 for all !.

Therefore, Proposition 2 implies that both �N(! j (z1; :::; zn)) and �N (! j zn) converge to
the posterior �(! j zn) for all ! and (z1; :::; zn) as N !1. We summarize this discussion
in the following Corollary.

Corollary 2 Fix a sample of normalized order statistics (z1; :::; zn). Then

lim
N!1

�N(! j (z1; :::; zn)) = lim
N!1

�N(! j zn) = �(! j zn) for all ! 2 
:

More generally, a player may have some, but not perfect, information on (z1; :::; zn�1).

Suppose that a player knows zn, and in addition knows that each zi, i < n, lies within

some arbitrary interval Ai of the real line. Corollary 2 implies that

lim
N!1

�N (! j z1 2 A1; :::; zn�1 2 An�1; zn) = � (! j zn) :

This observation will play a key role in our analysis. Suppose that player i has signal

� and that she has some information on the signals of those players that have stopped

before her. In particular, by the monotonicity of the informative equilibrium strategy

pro�le, she knows at the very least that those signals are all below �. By Theorem 1,

she would now choose the optimal stopping time conditional on her information on those

7The case with a discrete 
 is handled similarly.
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lower signals and conditional on the assumption that all other players have signals above

� (and of course subject to the restriction that stopping before the current instant of real

time is impossible). Corollary 2 implies that the number of players n with signals below

� summarizes the relevant part of the history in the limit as N ! 1. Hence even if all
signals were observable, the relevant conditioning event is still ZNn = N� when N !1.
We now turn to the formalization of this reasoning.

4.2 Optimal timing based on order statistics

We now consider optimal stopping times based on the inference on order statistics. This

is a purely hypothetical problem, where the decision maker is unconstrained in the sense

that she can choose any stopping time in [0;1]. This is in contrast to the actual timing
game de�ned in Section 2.2, where a player in stage k is constrained to choose a stopping

time in
�
tk�1;1

�
. We link the results of this section to the timing game in Section 5.

First, consider inference based on the limit model. In the following Lemma we establish

the uniqueness of the optimal solution to this problem for almost every realization zn of

Zn.

Lemma 1 Let Zn � �(n; g(0 j !)) and de�ne

tn (zn) := arg max
t2[0;1]

Z



v (t; !)�(! j zn)d!: (8)

Then tn (zn) is a singleton for almost every zn in the measure induced by the random

variable Zn on R+:

Proof. In the Appendix.
We turn next to the �nite model with N players. Consider a sample of normalized

order statistics �
ZN1 = z1; :::; Z

N
n = zn

�
;

and let tNn (z1; :::; zn) and t
N
n (zn) denote the optimal stopping times based on the whole

sample (z1; :::; zn) and sample zn, respectively:

tNn (z1; :::; zn) : = arg max
t2[0;1]

Z



v (t; !)�N(! j (z1; :::; zn))d!;

tNn (zn) : = arg max
t2[0;1]

Z



v (t; !)�N(! j zn)d!:

Note that tNn (y1; :::; yn) and t
N
n (zn) could in principle be sets. The next proposition,

which is based on Corollary 2 in the previous subsection, shows that they converge to

tn (zn), which is singleton for almost every zn by Lemma 1.

Proposition 3 For almost every (z1; :::; zn),

lim
N!1

tNn (z1; :::; zn) = lim
N!1

tNn (zn) = tn (zn) :

Proof. In the Appendix.
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4.3 Other applications

It should be noted that the statistical inference derived in Section 4.1 is valid for many

other large Bayesian games. Consider, for example, a k + 1st price auction of k identical

objects as speci�ed in Pesendorfer & Swinkels (1997). There are N bidders with unit

demands, ! 2 [0; 1] denotes the common value of the object for sale, and �i 2 [0; 1] is
the signal of bidder i. To keep notation consistent with the rest of the paper, we adopt

a non-standard notation where a low signal value indicates high value for the object.8

Pesendorfer & Swinkels (1997) have shown that in the unique equilibrium of such a game,

the equilibrium bid bN (�) is the expected value of the object conditional on the event

that e�N�1k = �i = �:

bN (�) = E[!
���e�N�1k = �i = � ]:

Using Proposition 2 and its corollaries, we note that in the limit N ! 1, the posterior
on ! conditional on N �e�N�1k = N � �i = z converges to the posterior on ! conditional on
Zk+1 = z, where Zk+1 � � (k + 1; g (0 j !)) :

lim
N!1

�N(! j N � �i = z;N � e�N�1k = z) = �(! j z)

=
�0 (!) � (g (0 j !))k+1 e�g(0j!)zk+1R 1

0
�0 (!0) � (g (0 j !0))k+1 e�g(0j!0)zk+1d!0

:

Therefore, the bid function for normalized signal N� = z converges to

lim
N!1

bN (z) := b (z) =

R 1
0
!0�0 (!0) � (g (0 j !0))k+1 e�g(0j!0)zd!0R 1
0
�0 (!0) � (g (0 j !0))k+1 e�g(0j!0)zd!0

:

The realized price is then a random variable P = b (z), where z � � (k + 1; g (0 j !)). To
our knowledge, this limit price distribution has not appeared in the literature before.

Similar explicit calculations can be performed for other auction formats including �rst

price (or descending) auction. Since the equilibrium statistical inference is quite simple, it

is also possible to extend the analysis beyond the risk neutral case. In Murto & Välimäki

(2012), we compare the expected revenues for di¤erent auction formats under CARA

preferences.

5 Informative equilibrium in large games

In this section, we relate the optimal stopping times derived in Section 4.2 to the equilib-

rium stopping times. Since the informative equilibrium strategy de�ned in Theorem 1 is

monotonic in signals, the players stop in the ascending order of their signals. Therefore,

8Translated to the notation used in Pesendorfer & Swinkels (1997), our � corresponds to 1� s in their
paper. Other than that, we assume here that the model is exactly as in Pesendorfer & Swinkels (1997).
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given the game with N players, the time instant at which the n:th player stops the game

is a function of the n lowest signal realizations amongst the players, and we can write it

as

TNn

�e�N1 ; :::;e�Nn � ;
where e�Ni is the ith order statistic in the game with N players. We let N !1, and derive
the statistical properties of TNn

�e�N1 ; :::;e�Nn � for small n in Section 5.1 below, and for large
n in Section 5.2 below. We discuss the welfare properties of the informative equilibrium

in Section 5.3.

5.1 First n stopping times

In Section 4.2, we de�ned the optimal stopping time tn (zn) of the limit model based on the

normalized nth order statistic. Since the sequence ftn (zn)g is not necessarily increasing
in n, we call this the unconstrained stopping time. In the actual timing game the players

cannot go backwards in time and a more relevant stopping time for the player with the

nth lowest signal is the constrained stopping time,

tn (z1; :::; zn) := max
n0=1;:::;n

tn0 (zn0) , (9)

where tn0 (zn0) is de�ned in (8). If the constrained stopping time for the nth order statistic

is di¤erent from the unconstrained one, then the player with the nth lowest signal stops

immediately at the beginning of some stage and regrets her decision not to stop already

at an earlier stage.

The main result of this section is that the stopping times in the informative equilibrium

of the game converge to the constrained stopping times de�ned in (9). We have:

Proposition 4 For all n; and for almost every (z1; :::; zn) ;

lim
N!1

TNn

�z1
N
; :::;

zn
N

�
= tn (z1; :::; zn) .

Proof. In the Appendix.
As a corollary to this result, we can relate the joint distribution of equilibrium stopping

times to the stopping times of the limit model. Omitting the arguments, let
�
TN1 ; :::; T

N
n

�
denote the vector that contains the random stopping times of the n �rst players to stop in

the symmetric equilibrium. Corollary 3 below provides a simple algorithm for simulating

equilibrium stopping times in the large-game limit: 1) �x an arbitrary n, 2) draw n in-

dependent realizations (z1; :::; zn) from exponential distribution with parameter g (0 j !),
and 3) compute t1 (z1) ; :::; tn (z1; :::; zn) using (8) and (9).

16



Corollary 3 The realized stopping times in the symmetric equilibrium converge in dis-

tribution to the constrained stopping times in the limit model:�
TN1 ; :::; T

N
n

� D!
�
t1 (Z1) ; :::; tn (Z1; :::; Zn)

�
where ti is a function de�ned by (8) and (9), and Z1; :::; Zn are independent, exponentially

distributed random variables with parameter g (0 j !).

Proof. Direct consequence of Propositions 2 and 4.

5.2 Delay in equilibrium

We now characterize the real time behavior of (almost) all the players in the informa-

tive equilibrium when N ! 1. Let TN(�; !) denote the random stopping time in the

informative equilibrium of a player with signal � when the state is ! and the number of

players at the beginning of the game is N . The randomness in the stopping time re�ects

the stopping decisions of the other players in the game. We are particularly interested in

the behavior of TN(�; !) as N grows and we de�ne

T (!; �) := lim
N!1

TN(!; �);

where the limit is to be understood in the sense of convergence in distribution.

The key random variable for understanding the informative equilibrium is the time

instant at which the last player stops, denoted by TN(!). Again, we consider the large

game limit:

T (!) := lim
N!1

TN(!):

We seek a characterization of T (!) ; and furthermore, we argue that the ex ante expected

payo¤ to the players in state ! converges to the expectation of v (T (!) ; !) as N grows.

We let F (t j !) denote the distribution of T (!):

F (t j !) = PrfT (!) � tg:

The following Theorem characterizes the asymptotic behavior of the informative equilib-

rium as the number of players becomes large. We denote by t (0) the optimal investment

time of a player that decides based on signal � = 0 only, and we denote by t� (!) the

�rst-best investment time for state !:

t� (!) := arg max
t2[0;1]

v (t; !) .

Theorem 2 In the informative equilibrium of the game, we have for all ! 2 
,
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1. For all � > 0,

lim
N!1

Prf
��TN(!; �)� TN(!)�� < "g = 1 for all " > 0:

2. F (t j !) = 0 for all t < maxft(0); t� (!)g and F (t j !) > 0 for all t > maxft(0); t� (!)g.

3. F (t j !) < 1 for all t < t� (max
) :

Proof. In the Appendix.
Theorem 2 summarizes the main properties of our model. Almost all the players stop

(almost) simultaneously (Part 1 of the theorem), and this stopping moment is ine¢ ciently

late and random (Parts 2 and 3 of the theorem). Since all the players with signals strictly

above zero stop at the same time, the statistical properties of the model are driven by the

lowest signals. All the relevant information is transmitted by the lowest order statistics,

and it is irrelevant how good information might be available at higher signal values.

5.3 Welfare

Denote by V � the ex-ante value of a player in the informative equilibrium of the game.

To address welfare implications of observational learning, we contrast V � to the ex-ante

value of an isolated player that chooses optimal stopping time based on her own signal

only.

Denote by t (�) the optimal stopping time of an isolated player with signal �:

t (�) := arg max
t2[0;1]

E! [v (t; !) j�i = � ] .

The ex-ante value of an isolated player is then:

V I := E� [E! (v (t (�) ; !) j�i = � )] :

Consider a player with signal � such that t (�) > t (0). One feasible (non-optimal)

strategy for this player is to stop at time t (�) if at least one other player still remains in

the game at that moment, or stop immediately after the last player other than her has

stopped. The realized stopping time resulting from this strategy is

et (�) = min (T (!) ; t (�)) :
From part 2 of the Theorem 2 we see that if t� (!) < t (�), then with positive probability

t� (!) < T (!) < t (�). Therefore, stopping at et (�) is strictly better than stopping at
t (�) for some state realizations. Since by the same Theorem, Pr (T (!) < t� (!)) = 0,

stopping at et (�) can never be worse than stopping at t (�). Since the equilibrium strategy
cannot be worse than this non-optimal strategy, it follows that V � > V I . This reasoning
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formalizes the intuition that a player with a high signals bene�ts from the information

revealed by the actions of those players that have lower signals.

On the other hand, we also see from Theorem 2 that Pr (T (!) > t� (!)) > 0, so we

must have V � < V , where V is the ex-ante payo¤ with perfect information on state:

V := E! (v (t� (!) ; !)) .

We have thus derived loose bounds for the ex-ante payo¤ in equilibrium:

V I < V � < V :

Unfortunately, we are not able to say more in general. The di¢ culty is that while our

supermodularity assumption restricts the direction to which the maximizer of v changes

as information changes, it puts no restriction on how the expected level of v changes.

In order to conduct a more complete welfare analysis, we must specify the model

further. In the next section we show that by restricting to a binary-state case (as most

literature on social learning), we are able to pin down equilibrium payo¤s conditional

on state. Combined with a quadratic payo¤ function, we get analytic expressions for

equilibrium payo¤s allowing natural comparative statics. With more than two states, we

can compute the payo¤s by simulation.

6 Example with quadratic payo¤s

In this section, we compute analytically the statistical properties of the informative equi-

librium in the large game limit for a special case of our model. As in much of the literature

on observational learning, we assume that there are only two possible states. This allows

us to compute analytically the welfare implications of observational learning. For sim-

plicity, we also assume signals to be essentially binary, although this is not important for

the analysis.

There are N ex ante identical players. We let ! 2 f0; 1g and we map the binary signal
setting into our model by assuming the following signal densities:

g(� j 0)
g(� j 1) = cl for all 0 � � � ��; (10)

g(� j 0)
g(� j 1) = ch for all �� < � < �; (11)

where cl > ch > 0 and �� > 0 are parameters. Hence all the signals below (above) ��

have the same informational content de�ned by parameter cl (ch). We call signals below

(above) �� low (high) and write � = l(= h). We assume that the probability of getting a

low (high) signal if ! = 0 (! = 1) is given by a parameter � > 1=2:

19



G(��; 0) = 1�G(��; 1) = � > 1

2
;

which implies that cl = �= (1� �) and ch = (1� �) =�. Hence, this is equivalent to a
standard binary-signal, binary-state model, where � measures the precision of the signals.

We assume that the prior probability is p0 = Prf! = 1g = 1
2
.

The payo¤s are given by9

v(t; !) = �(t� !)2: (12)

Hence the optimal action for a player with posterior p on f! = 1g is to invest at t = p.
The ex-ante payo¤ with perfect information is V = 0.

We start the analysis by calculating the payo¤s of a player that decides the timing of

her investment in isolation from other players. First, suppose a player must choose the

stopping time without a private signal. Then she stops at t = 1=2 and her payo¤ is

V 0 =
1

2

�
�1
4

�
+
1

2

�
�1
4

�
= �1

4
:

Second, suppose that an isolated player observes her own private signal. If she observes

a signal � � ��, her posterior becomes p = 1��. If � > ��, her posterior is p = �. Hence
her payo¤ is

V I = �� (1� �)2 � (1� �)�2

= �� (1� �) .

Notice that the loss from non-optimal decisions vanishes as the signals get accurate, i.e.

V I " V = 0 as � " 1. On the other hand, as � # 1=2, signals become uninformative and
V I # V 0.
Consider next the case with a large N . If the players were able to pool their informa-

tion, then the posterior would be very informative of the true state, and all the players

would stop together at the e¢ cient stopping time. This follows from the fact that the

number of players with a signal below �� is a binomial random variableX0(N) (orX1(N))

with parameter � (or 1��) if ! = 0 (or ! = 1). We next investigate how well the players
do if they can only observe each others�investment decisions but not their signals. That

is, we consider the payo¤s in the informative equilibrium of the game.

From Theorem 1, we know that there is an informative equilibrium that is symmetric

and in monotonic pure strategies. We denote this strategy pro�le by � � and the corre-

sponding ex-ante payo¤ by V � (this is the expected equilibrium payo¤ prior to observing

the private signal �).

9To keep payo¤ bounded from below, let v (t; !) = � (1� !)2 for all t > 1.
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When a player with signal �� invests, she behaves at every stage as if she knew that

all other players have signals (strictly) above �� with probability 1 (again, this follows

from Theorem 1). In order to compute V �, we compute �rst the payo¤ of a player with

signal � that deviates to the strategy ~� = � �(h; ��) for all h 2 H. In other words, the
deviating player just follows the strategy of the highest possible low signal player. We

denote the ex ante expected payo¤ to the deviating player by ~V when all other players

use their equilibrium strategies. Clearly this gives us a lower bound for V �.

Denote by ~T the random real time at which the deviating player invests when using

strategy ~� . Suppose that ! = 1. Then t� (!) = 1, and Part 2 of Theorem 2 states that

in the large game limit the last player stops at time t = 1. Part 1 of the same Theorem

says that the stopping times of all signal types converge in probability to the same real

time, hence we must have ~T ! 1 in probability. Therefore, denoting the expected payo¤

conditional on state ! by V!, we have:

~V1 ! 0

(in probability) as N !1.
We turn next to the computation of ~V0. To do this, we de�ne �rst the expected

payo¤ ~V�=l of the deviating player when her signal is low, i.e. when � < ��. Since the

informational content of each such signal is the same and since the signals across players

are conditionally independent, we know that this expected payo¤ is the same as the payo¤

to the player with the lowest possible signal � = 0. Since the player with the lowest signal

is the �rst to invest in the informative equilibrium, her payo¤ is the same as the payo¤

based on her own signal only, and thus

~V�=l = V
I = ��(1� �): (13)

On the other hand, the probability of state ! = 0 conditional on a low signal is �, and

therefore

eV�=l = �eV0 + (1� �) eV1: (14)

Combining (13) and (14), and solving for eV0 gives:
eV0 = � (1� �) 1 + eV1

�

!
:
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Therefore,

eV =
1

2
eV0 + 1

2
eV1

= �1� �
2

+

�
1

2
� 1� �

�

� eV1
! �1� �

2
as N !1:

The �nal step is to observe that as N ! 1, we have ~V ! V � in probability. This

follows from Part 1 of Theorem 2: since the real stopping times of all signal types (expect

zero-probability case � = 0) converge to the same instant T (!), the deviation that we

have considered will not a¤ect the realized payo¤ in the large game limit. Therefore, as

N !1,

V � ! �1� �
2

:

Note that in accordance with Section 5.3, V I < V � < V = 0 whenever � 2 (1
2
; 1). The

players bene�t from the observational learning in equilibrium (V � > V I), but their payo¤

is nevertheless below e¢ cient information sharing benchmark due to the informational

externality (V � < V ). Furthermore, denoting by V �! the equilibrium payo¤ conditional

on state, it should be noted that V �1 ! 0 and V �0 ! � (1� �). That is, observational
learning bene�ts the players when ! = 1 , but hurts them when ! = 0. Figure 1 draws

the payo¤s as functions of �.

< Figure 1 here >

To complete the analysis of the quadratic case, we analyze the distribution of T (!).

As long as t > 1 � � and some of the uninformed players with a low signal stay in the
game, they must be indi¤erent between staying and investing. Therefore, we must have

p�=l(t) = t for all t > 1� �;

where p�=l(t) denotes probability that a player with a low signal assigns on the event

f! = 1g at real time t. We already concluded that ~T ! 1 in probability if ! = 1, and

therefore, if it turns out that ~T < 1, then p�=l(t) = 0 for all t > ~T . Therefore, we can

compute the hazard rate � ~T (t) for the investment of the last player with a low signal in

the limit as N !1 from the martingale property of beliefs:

t = p�=l(t) = (1� � ~T (t)dt)p�=l(t+ dt) + � ~Tdt � 0;

or

� ~T (t) =
1

t
:
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Since Prf ~T < 1 � � j! = 1g ! 0 as N ! 1, we can write the conditional probabilities
of the event f ~T 2 [t; t+ dt) j ~T � tg as

� ~T (t j ! = 0) =
(
0 for t < 1� �
1

t(1�t) for 1� � � t < 1
� ~T (t j ! = 1) = 0 for t < 1.

By Theorem 2, the probability distribution that we have derived for ~T is also the prob-

ability distribution for T (!), the stopping time of the last player in the game, which we

have denoted F (t j !). Figure 2 draws F (t j 0) with di¤erent values of �. We see that
the more precise the signals, the higher the hazard rates.

< Figure 2 here >

It should be noted that the binary state-space makes this example quite special. With

more than two states, we are not able to compute analytically the equilibrium payo¤s or

the probability distribution for the players�stopping times. Nevertheless, as explained in

Section 5.1, it is easy to simulate the large-game limit for any model speci�cation. As an

illustration, we extend the example to ten states: ! 2 f0; 1
9
; 2
9
; :::; 1g (the payo¤ is given by

(12) as before so that t� (!) = !). Since we simulate the model directly in the large-game

limit, we only need to specify the signal distributions at the low end of the signal space,

and we let

g(0 j !) = 1� �
�
! � 1

2

�
,

where � 2 [0; 2) is a parameter that measures the precision of the signals. We use Monte-
Carlo simulation to derive V �! and F (t j !) for all state values with two signal precisions:
� = 1 (precise signals) and � = 0:1 (imprecise signals). Figure 3 shows V �! . We see that

V �! is increasing in ! so that observational learning is especially bene�cial in those states

where �rst-best investment is late. Also, we see that V �! is higher for � = 1 so that the

players bene�t from more accurate signals.

< Figure 3 here >

Figure 4 shows F (t j !) for all state values (upper panel with � = 1, lower panel

with � = 0:1). This �gure con�rms the properties derived in Theorem 2: for any state

realization, the players stop at a random time that is always later than the �rst-best time.

Note that there is more delay with imprecise signals, which explains the higher payo¤s

with precise signals.

< Figure 4 here >
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To summarize, this quadratic example has demonstrated the following properties of

our model: i) Observational learning is bene�cial in high states and harmful in low states.

ii) Ine¢ cient delays persist for all but the highest state. iii) Almost all the players invest

at the same time as N !1. iv) The instant at which almost all the players invest arrives
with a well de�ned hazard rate.

7 Discussion

7.1 Relation to Chamley and Gale (1994)

Our paper extends the models in Chamley & Gale (1994) and Chamley (2004) to a more

general payo¤ speci�cation. To understand the relationship between the models, it is

useful to note that we can embed the main features of those models as a special case of

our model. For this purpose, assume that ! 2 f0; 1g, and

v (t; 0) = e�rt; v (t;1) = �ce�rt:

This is the special case, where the optimal investment takes place either immediately

or never. The private signals a¤ect only the relative likelihood of these two cases. To see

this formally, note that for any information that a player might have, the strategy de�ned

in Theorem 1 is always a corner solution: either � � (ht; �) = tk�1 or � � (ht; �) = 1. In
other words, as explained in Chamley & Gale (1994), no player ever stops in any stage

at some t > tk�1 conditional on no other investments within (t� "; t) since otherwise it
would have been optimal to invest already at t � ". As a result, a given stage k ends
either immediately if at least one player stops at time tk = tk�1 or the stage continues

forever. Since this holds for all stages, all investment in the game must take place at real

time zero, and with a positive probability investment stops forever even when ! = 0.

The models in Chamley & Gale (1994) and Chamley (2004) are formulated in discrete

time, but the limit equilibrium in their model as the period length is reduced corresponds

exactly to the informative equilibrium of this special case of our model.

7.2 Uninformed investors

Suppose that there are N informed players and a random number of uninformed investors.

For simplicity, one could assume that the uninformed investors arrive according to an

exogenously given Poisson rate � per unit of real time. Assuming that the players are

anonymous, the statistical inference is changed only minimally relative to our current

model. If tk > tk�1; then there is a positive probability that the stopping player is indeed

uninformed. As a result, the remaining players update their beliefs less than in the main

model.
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In any stage where tk = tk�1; the player that stops is informed with probability 1. This

conclusion follows from the fact that stage k has a real-time duration 0 and uninformed

investors arrive at a bounded rate �. Hence inference in such stages is identical to the

main model and all the qualitative conclusions remain valid. It can be shown that for

large games, the hazard rate with which the game ends is unchanged by the introduction

of uninformed players as long as � is bounded.

7.3 More general state variables

Considering our leading application, investment under uncertainty, one may view as quite

extreme the modeling approach where nothing is learnt about the optimal investment time

during the game from other sources than the behavior of the other players. Indeed, exoge-

nous and gradually resolving uncertainty on the payo¤ of investment plays an important

role in the literature on real options.

Our paper can easily be extended to cover the case where the pro�tability of the

investment depends on an exogenous (and stochastic) state variable in addition to the

private information about common market state !. An example of such a formulation is:

v(t; ! ;x) = e�rt (xt � !) ;
dxt
xt

= �dt+ �dZt;

where Zt is a Brownian motion. Such investment problems have been studied extensively

in the literature (see Dixit & Pindyck (1994) for a survey), and it is well known that the

optimal investment time is the smallest t where xt exceeds a threshold value x (!). Hence

the problem is reduced to a model with a single state xt, and the optimal investment

threshold for a known ! is strictly increasing in !: The analysis of our paper would

extend in a straightforward manner to this case: the informative equilibrium strategy

would command a player with signal � to choose an investment threshold x�
�
hk; �

�
that

is optimal conditional on � being the lowest signal among the remaining players. By our

assumption of MLRP of the signals, the equilibrium thresholds would always be increasing

in �. All of our results would have a natural analogue in this extended model, with the

stochastic state variable xt playing the role that the calender time t plays in the current

paper.

8 Conclusions

The analytical simplicity of the model also makes it worthwhile to consider some other

formulations. First, it could be that the optimal time to stop for an individual player i

depends on the common parameter ! as well as her own signal �i: The reason for consid-

ering this extension would be to demonstrate that the form of information aggregation
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discovered in this paper is not sensitive to the assumption of pure common values. Second,

by including the possibility of payo¤ externalities in the game we can bring the current

paper closer to the auction literature. We plan to investigate these questions in future

work.

9 Appendix

Proof of Proposition 1. The monotonicity of � �
�
hk; �

�
follows directly from MLRP

and the (log-)supermodularity of v.

Denote by b� �hk; �� the optimal unconstrained stopping time based on the public
history hk and the knowledge that the lowest signal amongst the players remaining in the

game after history hk is �:

b� �hk; �� := min�argmax
t�0

E
�
v (t; !)

��hk; �kmin = � �� : (15)

The relationship between b� �hk; �� and � � �hk; �� de�ned in (3) is:
� �
�
hk; �

�
= max

�
tk�1;b� �hk; ��� . (16)

Consider an arbitrary stage k � 1. The highest type that stops during that stage is �k,
and therefore by (16) b� �hk�1; �k� � � � �hk�1; �k� = tk�1. (17)

Consider next stage k. We have hk = hk�1[(tk�1;Sk�1), where Sk�1 consists of players
with signals in

�
�k�1; �k

�
. Therefore, it follows fromMLRP and the (log-)supermodularity

of v that b� �hk; �k� < b� �hk�1; �k� � tk�1,
where the latter inequality follows from (17). By the continuity of signal densities, we

then have b� �hk; �k + "� < tk�1
for some " > 0. But then from (16), we have

� �
�
hk; �k + "

�
= tk�1;

and the result follows from the monotonicity of � �
�
hk; �

�
in �.

Proof of Theorem 1. The proof uses the one-shot deviation principle. We assume

that all players j 6= i play according to � � (h; �) after all histories h. We then consider

an arbitrary history hk and assume that player i deviates from � �
�
hk; �

�
to an arbitrary

t � tk�1 in stage k, but uses � �
�
hk

0
; �
�
for all k0 > k. We denote by eV (t) the value of

this deviation evaluated at the beginning of stage k. Our goal is to show that � �
�
hk; �

�
2

argmaxt�tk�1 eV (t).
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Let �min�i := minj2N k�i �j denote the smallest signal amongst players other than i and

recall from (4) that ��k (t) denotes the highest type that stops at or before time t. We

may now formally express the value from deviation. For t = tk�1, we have:

eV �tk�1� = E �v �tk�1; !� ��hk; �i = � � , (18)

and for t > tk�1:

eV (t) = Pr
�
�min�i > �

�k (t)
��hk; �i = ��E �v (t; !) ��hk; �i = �; �min�i > �

�k (t)
�

(19)

+Pr
�
�min�i � ��k (t)

��hk; �i = ��E �V �hk+1� ��hk; �i = �; �min�i � ��k (t)
�
;

where V
�
hk+1

�
denotes the continuation value of i at the beginning of stage k+1, when

following � �
�
hk

0
; �
�
for all stages k0 > k.

It is useful to set an upper bound for potential pro�table deviations. Let t denote the

optimal stopping time assuming that all the players have the highest possible signal:

t := min

�
arg max

t�tk�1
E
�
v (t; !)

��hk; �j = 1 for all j 2 N k
��
.

We organize the proof in four claims. Claim 1 establishes the continuity of eV (t) in
(tk�1; t]. Claim 2 together with Claim 1 shows that argmax

t

eV (t) � � � �hk; �� : Claims 3
and 4 together with Claim 1 show that min

�
argmax

t

eV (t)� � � � �hk; �� :
Claim 1: eV (t) is continuous and bounded within �tk�1; t�.
Proof of Claim 1: Whenever � �

�
hk; �

�
2
�
tk�1; t

�
, then by MLRP and strict

(log)supermodularity of v, � �
�
hk; �

�
is strictly increasing in �. It follows that ��k (t)

is continuous within
�
tk�1; t

�
. Since v (t; !) is continuous in t for all !, and each of

the terms in (19) is continuous in ��k (t), it follows that eV (t) is continuous in t within�
tk�1; t

�
. Although it is possible that ��k (t) is discontinuous at t = t,10 we must have

� �
�
hk; �

�
� t for all �, and hence ��k

�
t
�
= 1. This is because t is an upper bound for

any optimal stopping time in our model. Since all the remaining players stop at latest at

t irrespective of their signals, it is not possible to observe any new information at that

moment. Continuity of eV (t) at t then follows directly from continuity of v. eV (t) is
trivially bounded because by assumption v is bounded.

Claim 2:

For all t 2
�
tk�1; � �

�
hk; �

��
, there is some t0 2

�
t; � �

�
hk; �

��
such that eV (t0) > eV (t) .

Proof of Claim 2: Denote by t� (�; �0) the optimal stopping time of a player with
signal �, when all the other players are known to have signals above �0:

t� (�; �0) := min

�
arg max

t�tk�1
E
�
v (t; !)

��hk; �i = �; �min�i � �0
�
:

�
(20)

10This happens if signals become uninformative above some threshold �� < 1 as in our binary signal

example of Section 6.
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If t 2
�
tk�1; � �

�
hk; �

��
, then � > ��k (t), and by MLRP and strict (log-)supermodularity

of v, we have t < t�
�
�; ��k (t)

�
< � �

�
hk; �

�
. In other words, conditional on information

available at time t, it is strictly better for i to stop at t�
�
�; ��k (t)

�
than t. Any possibility

to revise this decision in the interval
�
t; t�

�
�; ��k (t)

��
may only reinforce this conclusion.

It follows that eV �t� ��; ��k (t)�� > eV (t).
Claim 3:

For all t 2
�
� �
�
hk; �

�
; t
�
, there is some t0 2

�
� �
�
hk; �

�
; t
�
such that eV (t0) � eV (t) .

Proof of Claim 3: Since t > � �
�
hk; �

�
, we have � � ��k (t). Suppose �rst that

this holds as equality: � = ��k (t). Then ��k (t0) = � for all t0 2
�
� �
�
hk; �

�
; t
�
. In

that case i learns nothing from others within
�
� �
�
hk; �

�
; t
�
since no player stops there.

By de�nition, � �
�
hk; �

�
is an optimal stopping time for a player with that information,

therefore eV �� � �hk; ��� � eV (t).
Consider next strict inequality � < ��k (t). Let t0 = t�

�
�; ��k (t)

�
< t and let �0 =

��k (t0). Here t0 represents the optimal stopping time of i conditional on her information

at time t, and �0 represents the cuto¤ type that stops at time t in equilibrium. We have

� < �0 < ��k (t) and � �
�
hk; �

�
< t0 < t. We want to show that stopping at t0 dominates

stopping at t. To do that, we decompose (19) according to whether �min�i lies in (0; �
0),�

�0; ��k (t)
�
or
�
��k; 1

�
, and compare eV (t) and eV (t0) term by term.

Suppose that �min�i 2
�
�0; ��k (t)

�
. Then t0 < � �

�
hk; �min�i

�
< t, so that choosing t0

means that i is the �rst to stop, while choosing t means that another player j stops

�rst at time � �
�
hk; �min�i

�
< t. Since � �

�
hk; �min�i

�
> � �

�
hk; �

�
, Proposition 1 implies

that � �
�
hk+1; �

�
= tk, so that i will stop immediately at the beginning of the next stage

and the continuation value V
�
hk+1

�
is the expectation of v

�
� �
�
hk; �min�i

�
; !
�
. Therefore,

evaluating (19) at t gives

eV (t) = Pr
�
�min�i > �

�k (t)
�
E
�
v (t; !)

���min�i > �
�k (t)

�
+Pr

�
�0 < �min�i � ��k (t)

�
E
�
v
�
� �
�
hk; �min�i

�
; !
� ���0 < �min�i � ��k (t)

�
+Pr

�
�min�i � �0

�
E
�
V
�
hk+1

� ���min�i � �0
�
;

while evaluating (19) at t0 gives

eV (t0) = Pr
�
�min�i > �

�k (t)
�
E
�
v (t0; !)

���min�i > �
�k (t)

�
+Pr

�
�0 < �min�i � ��k (t)

�
E
�
v (t0; !)

���0 < �min�i � ��k (t)
�

+Pr
�
�min�i � �0

�
E
�
V
�
hk+1

� ���min�i � �0
�
;

where Pr and E should here be understood conditional on hk and �i = �. By strict

(log-)supermodularity and MLRP, we have

E
�
v (t0; !)

���min�i > �
�k (t)

�
> E

�
v (t; !)

���min�i > �
�k (t)

�
and

E
�
v (t0; !)

���0 < �min�i � ��k (t)
�
> E

�
v
�
� �
�
hk; �min�i

�
; !
� ���0 < �min�i � ��k (t)

�
.
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Therefore, eV (t0) > eV (t).
Claim 4: eV (t) � eV �t� for all t > t.
Proof of Claim 4: t is the optimal stopping time conditional on all the players

having the highest possible signal. By strict (log-)supermodularity and MLRP, stopping

at t is preferable to stopping at t � t conditional on any information that i might learn
from the other players, therefore eV (t) � eV �t� for all t > t.
We may now �nish the proof by combining the above results. Claim 2 implies that

� �
�
hk; �

�
is the maximizer of eV (t) on any interval [t; � � �hk; ��] for t > tk�1. By Claim

1, this property extends to [tk�1; � �
�
hk; �

�
]:

� �
�
hk; �

�
2 arg max

t2[tk�1;��(hk;�)]
eV (t) .

Claims 1 and 3 imply that

� �
�
hk; �

�
2 arg max

t2[��(hk;�);t]
eV (t) .

Combining these with Claim 4 gives

� �
�
hk; �

�
2 arg max

t�tk�1
eV (t) .

We have now shown that if all players j 6= i play � �(h; ��i) at all histories h, and if
� �
�
hk

0
; �
�
is optimal for i in all stages k0 > k, then � �

�
hk; �

�
is optimal for i in stage k.

Since � � (h; �) is clearly also optimal for i in a stage where she is the only player left in

the game, the proof is complete by backward induction.

Proof of Proposition 2. For n = 1, this result is implied by Theorem 5 of Gnedenko

(1943). To extend the result to n > 1, assume that
�
ZN1 ; Z

N
2 � ZN1 ; :::; ZNk � ZNk�1

�
con-

verge to k independent exponential variables for some k � 1. Consider ZN+1k+1 . Since the

signals are statistically independent,
�e�N+1k+1 � e�N+1k

���e�N+1k = z
�
has the same distribution

as
�e�Nk � e�Nk�1 ���e�Nk�1 = z�. Multiplying by N we conclude that�

N

(N + 1)
(N + 1)

�e�N+1k+1 � e�N+1k

� ���e�N+1k = z

�
has the same distribution as �

N
�e�Nk � e�Nk�1� ���e�Nk�1 = z� :

Therefore also �
N

(N + 1)

�
ZN+1k+1 � ZN+1k

� ���e�N+1k = z

�
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and ��
ZNk � ZNk�1

� ���e�Nk�1 = z�
have the same distribution.

By induction hypothesis,
�
ZNk � ZNk�1

�
converges to an exponential random variable,

and by the argument above, so does

N

(N + 1)

�
ZN+1k+1 � ZN+1k

�
:

Therefore also
�
ZNk+1 � ZNk

�
converges to an exponential r.v. as N !1.

Proof of Lemma 1. Let

U(t j zn) :=
Z



v (t; !)�(! j zn)d!:

Since v (t; !) is continuous on T�
; we note that also U(t j zn) is continuous in t (including
continuity at t = 0 and t = 1). Therefore, a maximizer exists and tn (zn) � [0;1] is
non-empty. For the uniqueness, we use Theorem 1 in Araujo & Mas-Colell (1978). To

this e¤ect, we note from (7) that �(! j zn) is continuously di¤erentiable in zn. Using the
functional form of @

@zn
� (! j zn) computed from (7), and noting that v (t; !) and g (0 j! )

are bounded, it is easy to �nd a constant M that guarantees���� @@zn [v (t; !)� (! j zn)]
���� < M� (! j zn)

for all ! 2 
 and for all zn � 0. Since � (! j zn) is a probability distribution, M� (� j zn) :

 ! R is integrable, and therefore the derivative of U(t j zn) with respect to zn exists
and can be obtained by di¤erentiating under the integral sign (e.g. Lemma 2.2 in Lang

(1983)):
@

@zn
U(t j zn) =

Z



v (t; !)
@

@zn
� (! j zn) d!:

Since v (t; !) is continuous and �(! j zn) is continuously di¤erentiable in zn, @
@zn
U(t j zn)

is continuous both in t and zn. Furthermore, MLRP and the strict (log-)supermodularity

of v (t; !) imply that for t and t0 6= t such that U(t j zn) = U(t0 j zn); we have:
@ (U(t j zn)� U(t0 j zn))

@zn
6= 0:

Hence the conditions for Theorem 1 in Araujo & Mas-Colell (1978) are satis�ed and the

claim is proved.

Proof of Proposition 3. We prove here that for almost every (z1; :::; zn), limN!1 t
N
n (z1; :::; zn) =

tn (zn). The proof is identical for limN!1 t
N
n (zn) = tn (zn).

Let

UN(t j (z1; :::; zn)) :=
Z



v (t; !)�N(! j (z1; :::; zn))d! and

U(t j zn) :=
Z



v (t; !)�(! j zn)d!:
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Since v (t; !) is continuous on T �
, both UN(t j (z1; :::; zn)) and U(t j zn) are continuous
in t and have maximizers in T = [0;1]. Let K denote a bound of jv (t; !)j on T �
:We
start by showing that UN(t j (z1; :::; zn)) converges uniformly to U(t j zn):

lim
N!1

sup
t2T

����Z



v (t; !)�N(! j (z1; :::; zn))d! �
Z



v (t; !)� (! jzn ) d!
����

� K lim
N!1

Z



���N(! j (z1; :::; zn))� � (! jzn )�� d! = 0;
where the last equality follows from Sche¤é�s Theorem (e.g. Theorem 16.11 in Billingsley

(1986)) and the fact that �N(! j (z1; :::; zn)) converges pointwise to � (! jzn ).
Take any sequence

�
tN (z1; :::; zn)

	1
N=n

such that tN (z1; :::; zn) 2 argmaxUN(t j
(z1; :::; zn)) for every N . It is easy to see that for all N , we have����UN(tN (z1; :::; zn) j (z1; :::; zn))� max

t2[0;1]
U ( t j zn)

���� � max
t2[0;1]

��UN(t j (z1; :::; zn))� U(t j zn)�� :
By the uniform convergence of UN(t j (z1; :::; zn)) to U(t j zn), the right hand side
converges to zero as N !1, and therefore

lim
N!1

UN(tN (z1; :::; zn) = max
t
U(t j zn).

Since U(t j zn) has a unique maximizer tn (zn), we have

tNn (z1; :::; zn)! tn (zn) .

Proof of Proposition 4. Fix n and (z1; :::; zn). Call the player with the ith lowest signal

player i. Her normalized signal is zi. Consider her information at the time of stopping.

By (3), she conditions on all the other remaining players having a signal higher than hers.

Since the informative equilibrium is monotonic, all the players that have signals above

her signal are active. Therefore, i conditions on her signal being the mth lowest, where

we must have m � i. It then follows from Proposition 3 that when N !1, the optimal
stopping time of i conditional on her information at the time of stopping converges to

tm (zi), where m � i. By MLRP and (log)supermodularity of v, we have tm (zi) � ti (zi),
and therefore,

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
� ti (zi) . (21)

Assume next that

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
> lim

N!1
TNi�1

�z1
N
; :::;

zi�1
N

�
: (22)

This is the case, where player i stops at time tk > 0 in some stage k (for N high enough).

This means that i has the lowest signal among the active players at the time of stopping
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so that she correctly conditions on having the ith lowest signal. Since her conditioning is

correct, Proposition 3 implies that

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
= ti (zi) . (23)

Combining equations (21) - (23), we have

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
= max

h
lim
N!1

TNi�1

�z1
N
; :::;

zi�1
N

�
; ti (zi)

i
.

For the player with the lowest signal, we have:

lim
N!1

TN1

�z1
N

�
= t1 (z1) = t1 (z1) :

Therefore, it follows by induction that for i = 2; :::; n

lim
N!1

TNi

�z1
N
; :::;

zi
N

�
= max

�
ti�1 (z1; :::; zi�1) ; ti (zi)

�
= ti (z1; :::; zi) :

Proof of Theorem 2. We analyze the sequence of stopping times tn (z1; :::; zn),

n = 1; 2; :::, de�ned by (8) and (9) where the inference is based on exponential ran-

dom variables. After that, we link those properties to equilibrium stopping times using

Corollary 3.

By the strong law of large numbers, the sample average of n exponential random

variables Z1, Z2 � Z1; :::; Zn � Zn�1 converges almost surely to 1=g (0 j! ) as n ! 1.
Assumption 4 implies that this identi�es the true state !. Therefore, the unconstrained

stopping time tn (Zn) de�ned in (8) converges to the �rst-best time as n!1:

tn (Zn)
a:s:! t� (!) . (24)

Consider then the distribution of tn (Z1; :::; Zn) = max (t1 (Z1) ; :::; tn (Zn)). Being the

maximum process of tn, tn (Z1; :::; Zn) converges to some random variable t1:

tn (Z1; :::; Zn)
a:s:! t1; (25)

and Equation (24) implies that

lim
n!1

Pr
�
tn (Z1; :::; Zn) � t

	
= 0 for all t < t� (!) . (26)

Consider next the distribution of the �rst stopping time t1 (Z1). We have denoted the

optimal stopping time under the lowest possible individual signal by t (0). On the other

hand, by assumption 4 we have g (0 j! ) > g (0 jmax
) for any ! < max
, and therefore
the likelihood ratio across states ! and max
 goes to zero when z1 !1:

lim
z1!1

g (0 j! ) e�g(0j! )z1
g (0 jmax
) e�g(0jmax
)z1 = 0:

32



Therefore, we have

lim
z1#0

t1 (z1) = t (0) and lim
z1"1

t1 (z1) = t
� (max
) ,

and hence:

lim
n!1

Pr
�
tn (Z1; :::; Zn) < t (0)

	
= 0; (27)

and

lim
n!1

Pr
�
tn (Z1; :::; Zn) > t

	
> 0 for all t < t� (max
) . (28)

We turn next to the stopping times in the informative equilibrium, and �x a player

with signal � > 0. Consider the game with N players, and let n (N) =
lp
N
m
(where

d�e denotes rounding up to the nearest integer). As N ! 1, also n (N) ! 1, so by
Corollary 3, and (25), the stopping times of all players that stop after the n (N)th player

converge in probability to t1 as N !1. Also, since n (N) =N ! 0 as N !1, we have

lim
N!1

Pr
ne�Nn(N) < �o = 1 for any � > 0,

so that all the players with signals above � stop later than the n (N)th player. This

obviously applies also to the player with the highest signal who stops at time TN(!).

Therefore, for any � > 0,

lim
N!1

Prf
��TN(!; �)� TN(!)�� < "g = 1 for all " > 0;

which establishes part 1 of the theorem. It then follows directly from (26), (27), and (28)

that

F (t j !) = 0 for all t < maxft(0); t� (!)g and
F (t j !) < 1 for all t < t� (max
) .

It remains to prove that

F (t j !) > 0 for all t > maxft(0); t� (!)g:

Take an arbitrary t > max ft (0) ; t� (!)g. We want to show that Pr (tn (zn) < t for all n) >
0. De�ne for each n = 1; 2::: a cuto¤ value zn as follows:

zn := sup fz : tn (z) < tg ,

so that zn < zn implies tn (zn) < t. Since limz1#0 t1 (z1) = t (0) < t, we have z1 > 0.

Moreover, since tn+1 (z) < tn (z) for all z, fzng1n=1 is a strictly increasing sequence. Since
for any ! the sequence ftn (Zn)g converges to t� (!) (almost surely), we have

lim
n!1

(zn=n) = h > 1=g (0 j! ) := h�.
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Pick an arbitrary h 2
�
h�; h

�
. We can then �x a large enough integer K such that the

following implication holds:

fzn=n < h for n > Kg =) zn < zn. (29)

Suppose that zn < zn for all n = 1; :::; K, and furthermore zK < Kh. Since K is some

�xed integer and fzng1n=1 is a strictly increasing sequence with z1 > 0, this event has a
strictly positive probability:

Pr (tn (zn) < t for all n = 1; :::; K, and zK < Kh) > 0. (30)

De�ne the following process:

fxng1n=0 := fzK+n � nhg
1
n=0 .

Note that x0 < 0, and fxng1n=0 is a supermartingale:

E (xn+1 jxn ) = zK+n + h� � (n+ 1)h < zK+n � nh = xn.

Moreover, since zK < Kh, it follows from (29) that

fxn < 0 for n � 1g =) zK+n < zK+n. (31)

To show that Pr (tn (zn) < t for all n > K) > 0, we only need to show that

Pr (xn < 0 for all n = 1; 2; :::) > 0.

To do that, we transform xn to yield a bounded martingale gn. Let gn = e�xn, where � is

some constant. We have:

E (gn+1 jgn ) = E
�
e�(zK+n+yK+n+1�(n+1)h) jxn

�
= E

�
e�(xn+yK+n+1�h) jxn

�
= e�xnE

�
e�(yK+n+1�h) jxn

�
= gnE

�
e�(yK+n+1�h) jxn

�
;

where yK+n�1 � exp (1=h�). We want to choose � so that gn is a martingale:

E
�
e�(yK+n+1�h) jxn

�
= 1

or

E
�
e�yK+n+1 jxn

�
= e�h.

Noting that yK+n�1 � exp (1=h�), recalling the moment generating function of exponential
distribution, and taking log on both sides gives us:

�h = � log (1� �h�) .
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Since h > h�, this equation has a unique positive solution that we denote by �� > 0.

Hence

fgng1n=0 :=
�
e�

�xn
	1
n=0

is a martingale. Let n� denote the stopping time:

n� := min fn : xn � 0g .

For all n < n�, we have 0 < gn < 1, so fgng is a bounded martingale. Suppose that
Pr (n� <1) = 1. Then by the Optional Sampling Theorem, we have

E (gn� jx0 ) = g0 = e�x0 < 1.

But if n� < 1, we have xn� � 0, so that gn� > 1. This is a contradiction, and we can

conclude that

Pr (n� <1) = Pr (xn � 0 for some n = 1; 2; :::) < 1,

or

Pr (xn < 0 for all n = 1; 2; :::) > 0.

Combining this with (31) and (30) gives us

Pr (tn (zn) < t for all n = 1; 2; :::) > 0;

that is,

F (t j !) > 0 :
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Figure 1: Payoffs as functions of signal precision in the quadratic binary example. 

  



 

Figure 2: Probability distribution of the stopping time of the last player with various signal 
precisions ( = 0). 

 

  



 

 

Figure 3: Equilibrium payoffs conditional on state in the ten-state example. Triangle marker: = 1. 
Square marker: = 0.1. 
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Figure 4: Conditional probability distributions of the stopping time of the last player in the ten-
state example. Each solid curve corresponds to one state realization. Dashed lines correspond to 
first best stopping times for each state. Top panel: = 1. Bottom panel: = 0.1. 

 


	JetRevPauli240713
	Figures

