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Abstract

This note analyzes di¤erent types of all-pay auctions when the number of

bidders becomes large. We compute the distributions of the highest bids for

the �rst-price all pay auction and we show that the expected payment made by

the winning bidder converges to half of the total payments. In the second-price

all-pay auction (the war of attrition), the highest bid amounts to about 35.5

% of the total revenues. We also compute the payments for all-pay auctions

with multiple prizes.
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JEL Classification: D44

1 Introduction

All-pay auctions can be seen as the simplest type of a rent seeking contest. A number

of bidders choose how much to bid in exchange for a favor with the understanding

that the highest bidder is granted the favor. The advantage of this extremely simple

model is that well-known results from auction theory can be used to characterize

equilibrium bidding.

In this note, we compute the equilibrium outcomes for large all-pay auctions

where a number of privately informed players make a bid for an object. All bidders
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including the losing ones have to pay their own bid. Since almost all bidders are

losers in a bidding contest with large numbers of participants, the bidders will have

to be extremely careful in preparing their bids: only the types with values close to

the top of the support of valuations make bids that di¤er signi�cantly from zero.

Our base model has a single object and N ex ante symmetric bidders with private

valuations drawn independently from a �xed interval. We compute the limiting ran-

dom outcome for the model as N !1. In light of the revenue equivalence theorem,
it is no surprise that in any symmetric equilibrium of the model, the expected rev-

enue in such auctions converges to the highest valuation in the support of the bidders

valuations. More interestingly, we give an explicit formula for the distribution of the

K highest bids for the limiting game where N grows towards in�nity. The expected

revenue from the winning highest bid is half of the total revenue. More generally,

the kth highest bid brings in expectation 1
2k
of the total revenue.

We get this revenue result by combining the well known formula of the symmetric

bidding equilibrium for all-pay auctions with the asymptotic characterization of the

distribution of the perceived winning probabilities within the population of players.

We normalize the value of the object to lie in the unit interval, and as a result, the

highest bidders assign a value close to unity to the object. In an all-pay auction, a

bidder breaks even if she bids her value of the object multiplied by the probability

of winning. In large auctions, bidders cannot make a positive rent. As a result,

the winning bidder must make a bid equal to her probability of winning. We show

that in large auctions, the interim winning probability of the bidder with the highest

order statistic converges in distribution to the uniform distribution. In other words,

the perceived winning probability of the winner in the all-pay auction is uniformly

distributed. We also show that conditional on the kth highest bidder perceiving

a probability x of winning, the (k + 1)st highest bidder�s perceived probability of

winning is uniform on [0; x].

There is a large literature on standard auctions with many bidders and most of the

economic questions in the IPV setting are settled.1 The analysis of all-pay auctions

is more complicated than the analysis of standard auctions where only the winner

pays. In standard auctions, the bidding functions have a well de�ned continuous

1Our private values setup is an easy special case of Bali & Jackson (2002).
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limit. In the second-price auction, the bid equals own valuation regardless of the

number of bidders. In �rst-price auctions, bids also converge to own valuation as

the number of players grows large. In all-pay auctions, this is not true. The limit of

the equilibrium bidding functions is discontinuous. At all �xed types strictly below

the value of the object, the symmetric equilibrium bid converges to zero. The bid

of the highest type converges to the value of the object. A meaningful analysis of

the auction then requires us to focus on the bids of the bidders at an appropriate

distance (that depends on the number of bidders) from the top of the distribution.

In a recent paper, Olszewski & Siegel (2016) study contests with large numbers

of bidders. In that paper, the number of prizes also increases with the number of

bidders. As a result, the outcome for an individual bidder depends on the fraction

of bidders submitting a higher bid. This implies that the bid distribution that each

individual bidder is facing is deduced by using the law of large numbers. With a single

prize, the relevant statistic for an individual bidder is the highest order statistic in

the bids by others. As a result, the method of analysis in our paper is quite di¤erent

from theirs.2

We conclude the note by deriving revenue results for the second-price all-pay

auction (also known as the silent war of attrition) and for an auction with n possibly

di¤erent prizes.3 Similar steps as in the case of all-pay auction allow us to charac-

terize the expected payments by the K highest bidders. In the war of attrition, the

limiting density of the highest bid is the exponential distribution, and the winning

bidder�s expected payment is 35.5% of the value of the object. In the multi-prize

auction, we derive a simple formula for the expected values of the highest bids in the

general case.

2An analogy can be drawn to large a¢ liated k+1st price auctions where the highest bid remains

random in a single-object auction, but converges to the true value as the number of objects sold

increases (see Pesendorfer & Swinkels (1997)).
3We thank Hannu Vartiainen for suggesting that we analyze the war of attrition and the Associate

Editor for the suggestion of covering the contest with n prizes.
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2 Model

There are N ex ante identical bidders with private valuations �i drawn independently

from a common distribution F (�) with support [0; 1], and a continuous density f(�).
We denote by �(k)N the kth order statistic amongst (�1; : : : ; �N).

Each bidder i submits a bid bi and the payo¤ to bidder i of type �i given a vector

of bids b = (b1; : : : ; bN) is given by

ui (�i; b) =

8><>:
�i � bi if bi > bj for all j 6= i,
1
n
�i � bi if bi ties for highest bid with (n� 1) other bids,
�bi otherwise.

We look for a symmetric Bayesian Nash Equilibrium where all bidders use the same

equilibrium strategy bi (�i) = b (�i).

We are interested in characterizing for each �xed K the distribution of the K

highest bids along a sequence of games where N !1. Let b(k)N stand for the kth or-

der statistic amongst (bN (�1) ; : : : ; bN (�N)) , where bN(�) is a symmetric equilibrium
strategy in the game with N players. Let

b(k) = lim
N!1

b
(k)
N ,

where the limit is in the sense of convergence in distribution. We call the vector of

random variables
�
b(1); : : : ; b(K)

�
the limiting equilibrium outcome of the game. Note

that we are not de�ning equilibrium strategies in the limit game, but characterizing

the limit of equilibrium bids along the sequence of �nite games as N grows large.

3 Distribution of perceived winning probabilities

Before analyzing the equilibrium bids, we explain the key step in our analysis. Instead

of working with the order statistics of signals, we work with the order statistics

of perceived winning probabilities. Given strictly increasing bidding strategies, the

probability of winning is the probability that all the other players have lower signals.

Let �N (�) denote the winning probability of a player with signal �:

�N (�) := F (�)
N�1
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and let �(k)N denote the kth highest subjective winning probability:

�
(k)
N := �N

�
�
(k)
N

�
= F

�
�
(k)
N

�N�1
.

Since the type distribution F has support [0; 1]; the kth order statistic �(k)N from

any sample of size N with k < N is a random variable on [0; 1]; and consequently so

is �(k)N = F
�
�
(k)
N

�N�1
: For all �xed k; �(k)N converges to the degenerate distribution

on 1 as N !1: Similarly, for all � 2 (0; 1); F (�)N�1 ! 0 as N !1:We now show
that the composite random variable �(k)N has a non-degenerate limiting distribution

on [0; 1] as N !1:
Proposition 1 characterizes the limiting joint distribution for

�
�
(1)
N ; :::; �

(K)
N

�
on

[0; 1]K as N ! 1: We let U (a; b) denote the uniform distribution on [a; b]; and

the convergence denoted by d! is understood to be in the sense of convergence in

distribution.

Proposition 1 For any i.i.d. sample (�1; : : : ; �N) from a �xed distribution F (�),

�
(k)
N

d! �(k) as N !1,

where �(0) = 1 and a(k), k = 1; :::; K is a random variable with conditional distribu-

tion �
�(k)

���(k�1) � � U �0; �(k�1)� .
Proof. By the de�nition of �(1)N , we have:

Pr
�
�
(1)
N � x

�
= Pr

�
F
�
�
(1)
N

�N�1
� x

�
= Pr

h
F
�
�
(1)
N

�
� x

1
N�1

i
:

Since the event F
�
�
(1)
N

�
� x

1
N�1 is the event that F (�i) � x

1
N�1 for all i = 1; :::; N

and since the signals are independently distributed, we have

Pr
h
F
�
�
(1)
N

�
� x

1
N�1

i
=
�
Pr
h
F (�) � x

1
N�1

i�N
=
�
x

1
N�1

�N
= x

N
N�1 ;
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where the second equality follows from the fact that if Y is a random variable with

c.d.f. F (�), then F (Y ) is distributed uniformly on [0; 1]. Therefore, for any x 2 [0; 1],
we have

Pr
�
�
(1)
N � x

�
= x

N
N�1 :

Taking limits as N !1 gives

lim
N!1

Pr
�
�
(1)
N � x

�
= lim

N!1
x

N
N�1 = x,

and therefore

�
(1)
N

d! �(1) � U (0; 1) .

Consider next the distribution of �(k)N conditional on �(k�1)N . Fix x and y with

0 < x < y < 1. Then we have

Pr
h
�
(k)
N � x

����(k�1)N = y
i
= Pr

�
F
�
�
(k)
N

�N�1
� x

����F ��(k�1)N

�N�1
= y

�
= Pr

h
F
�
�
(k)
N

�
� x

1
N�1

���F ��(k�1)N

�
= y

1
N�1

i
= Pr

h
�
(k)
N � F�1

�
x

1
N�1

� ����(k�1)N = F�1
�
y

1
N�1

�i
: (1)

Since we have assumed that F is atomless and has full support [0; 1], its inverse

function F�1 is well de�ned.

Note that if �(k�1)N = F�1
�
y

1
N�1

�
, then there are exactly (N � (k � 1)) signals

with a value at or below F�1
�
y

1
N�1

�
. The event �(k)N � F�1

�
x

1
N�1

�
< �

(k�1)
N is

the event that each of those (N � (k � 1)) lowest signals is further down below
F�1

�
x

1
N�1

�
. Since individual signals are independently distributed random vari-

ables, we then have

Pr
h
�
(k)
N � F�1

�
x

1
N�1

� ����(k�1)N = F�1
�
y

1
N�1

�i
=

�
Pr
h
� � F�1

�
x

1
N�1

� ���� � F�1 �y 1
N�1

�i�N�(k�1)
: (2)

Finally, since the event
n
� � F�1

�
x

1
N�1

�o
is a subset of the event

n
� � F�1

�
y

1
N�1

�o
,
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Bayes�rule gives:

Pr
h
� � F�1

�
x

1
N�1

� ���� � F�1 �y 1
N�1

�i
=

Pr
h
� � F�1

�
x

1
N�1

�i
Pr
h
� � F�1

�
y

1
N�1

�i = Pr
h
F (�) � x

1
N�1

i
Pr
h
F (�) � y

1
N�1

i
=

�
x

y

� 1
N�1

; (3)

where the last equality follows again from the fact that if Y has c.d.f. F (�), then
F (Y ) is a uniform r.v. on [0; 1].

Combining (1) - (3), we have

Pr
h
�
(k)
N � x

����(k�1)N = y
i
=

"�
x

y

� 1
N�1
#N�(k�1)

=

�
x

y

�N�(k�1)
N�1

:

Hence:

lim
N!1

Pr
h
�
(k)
N � x

����(k�1)N = y
i
= lim

N!1

�
x

y

�N�(k�1)
N�1

=
x

y

and so �(k)N , k = 2; 3; : : : converge in distribution to random variables �(k) for which�
�(k)

���(k�1) � � U �0; �(k�1)� .
Proposition 1 characterizes the random variables �(k) recursively in terms of their

conditional distributions. To compute the bid distributions for di¤erent types of all-

pay auctions, we will also need the unconditional distributions of �(k). It is convenient

to express these unconditional distributions in terms of a logaritmic transformation:

Corollary 1 The random variable � ln
�
�(k)

�
is distributed according to a Gamma

distribution with parameters (k; 1) .

Proof. We can write

Pr
�
� ln

�
�(k)

�
� x

�
= Pr

�
� ln

�
�(k)

�(k�1)
� : : : � �

(2)

�(1)
� �(1)

�
� x

�
= Pr

�
� ln �(k)

�(k�1)
� : : :� ln �

(2)

�(1)
� ln�(1) � x

�
.
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It follows from Proposition 1 that �(k)

�(k�1)
, ..., �(1) are k independent uniformly distrib-

uted random variables. Hence, � ln
�
�(k)

�
is a sum of k independent exponentially

distributed random variables, i.e. Gamma with parameters (k; 1).

4 All-Pay Auction

We now use the result of the previous section to analyze the bid distribution of a

large all-pay auction. By a standard incentive compatibility argument, the symmetric

equilibrium bid distribution bN(�) must be an increasing function for all N . By a
simple undercutting argument, the bid distribution cannot have ties. Hence we know

that bN (�i) must be strictly increasing, and as a result, the outcome in the auction

is e¢ cient. In any symmetric strictly monotonic equilibrium, the lowest bidder � = 0

earns a zero expected payo¤. This allows us to conclude immediately that the limiting

expected revenue in the game is 1. The easiest way to see this is by using the revenue

equivalence theorem and the obvious observation that the expected payment in the

second price auction converges to 1 as the second highest order statistic converges

to the upper boundary of the support.

It is more interesting to characterize the limiting bid functions. Utilizing the

revenue equivalence principle, we can write the payo¤ of type �i in a symmetric

equilibrium as follows (see e.g. Krishna (2002) or Milgrom (2004)):

�i (F (�i))
N�1 � bN (�i) =

Z �i

0

(F (s))N�1 ds.

Hence the symmetric equilibrium bid is

bN (�i) = �i (F (�i))
N�1 �

Z �i

0

F (s)N�1 ds.

Observe that as N grows, the term on the right hand side capturing the information

rent accruing to the bidder of type �i vanishes, and the only remaining task is to

evaluate �i (F (�i))
N�1 for large N:4

The important term in the bid function is (F (�i))
N�1, which we have denoted by

�N (�i). This is simply the probability that all the other players have a signal lower

4
R 1
0
(F (s))

N�1
ds! 0 since (F (s))N�1 ! 0 a.e.
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than �i. The key point to notice here is that even though (F (�i))
N�1 vanishes for

all �i < 1 as N grows, the largest realized types also converge to 1 as N grows and

an argument evaluating the bid at the highest order statistic is needed. As we have

already shown above, F
�
�
(1)
N

�N�1
converges in distribution to �(1) � U (0; 1), and

hence also the highest bid converges to uniform:

b(1) � U (0; 1) .

By the same argument, F
�
�
(k)
N

�N�1
converges to �(k), and hence

bN

�
�
(k)
N

�
! F

�
�
(k)
N

�N�1 d�! �(k).

This means that for k = 2; 3; : : :,�
b(k)
��b(k�1) � � U �0; b(k�1)� .

From these expressions we can also easily compute recursively the unconditional

expectation of b(k):

E
�
b(k)
�
= Eb(k�1)

�
Eb(k)

��b(k�1) � = Eb(k�1) b(k�1)2
=
1

2
E
�
b(k�1)

�
.

Since E
�
b(1)
�
= 1

2
, we get

E
�
b(k)
�
=
1

2k
for k = 1; 2; : : :

Collecting the results, we have proved the following proposition.

Proposition 2 In the symmetric equilibrium of an all-pay auction with N bidders

with independent private values drawn from the same distribution F (�) on [0; 1], the
winning bid b(1)N converges in distribution to a uniform random variable on [0; 1] and

the conditional distribution of the kth highest bid b(k)N given
�
b
(1)
N ; :::; b

(k�1)
N

�
converges

to a uniform distribution on [0; b(k�1)].

Note that since
1X
k=1

1

2k
= 1,

this con�rms that the expected total revenue is one, which we already know from

the revenue equivalence theorem.
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5 Extensions

5.1 Second-Price All-Pay Auction

In this section, we keep the statistical model identical to the one in the previous

section and change the payo¤s to second-price all-pay auction also known as the

silent war of attrition. This model captures a game where the bidders decide at

each point whether to add an increment to their bids. The only information they

have when deciding whether to remain in the game is whether all other bidders have

dropped out of the game and stopped bidding or not. The last remaining bidder

wins the game and pays the bid of the last losing bidder.5 The silent war of attrition

has a symmetric equilibrium in strictly increasing strategies so we write the payo¤

directly under the assumption that bids are not tied.6

Let bN (�i) be the symmetric equilibrium bidding strategy in the game with N

players. The equilibrium expected payo¤ to a player with type �i is then

U (�i) =
�
�i � E[bN

�
�
(2)
N

� ����i = �(1)N ]�Pr(�i = �(1)N )� bN (�i)�1� Pr(�i = �(1)N )� :
(4)

To use the results of Section 3, we want to express the equilibrium bid in the limit

N ! 1 as a function of the perceived winning probability. This was easy in the

all-pay auction, since there bids were equal to perceived winning probabilities. In the

war of attrition, this is more involved since the payment of the winner is determined

by the next highest bid, i.e. by the bidder with the highest perceived probability

of winning amongst the other bidders. Let b (�) denote the bid of a player who

perceives her winning probability to be �. Denoting the second-highest perceived

winning probability by �0, we note that the distribution of �0 conditional on �0 < �

is uniform on [0; �]: Finally, noting that a bidder with perceived winning probability

� wins with probability � and loses with the complementary probability 1 � � (in
which case she pays her own bid b (�)), we can solve for b (�) by equating the gains

5It is well known that with more than two bidders, the regular (i.e. "non-silent") war of attrition

does not have a symmetric equilibrium. See Bulow & Klemperer (1999) for details.
6Theorem 1 in Krishna & Morgan (1997) shows this for a larger class of games that includes our

IPV model.
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when winning to losses when not winning:

�(1� E[b (�0) j�0 < � ]) = (1� �) b (�)

or

�

�
1�

Z �

0

b (�0)

�
d�0
�
� (1� �) b (�) = 0 for all �.

Di¤erentiating this with respect to � gives:

b0 (�) =
1

1� � ,

which together with initial condition b (0) = 0 gives:

b (�) = � ln (1� �) :

By inverting this relationship we get

� = 1� e�b(�).

Since �(1) � U (0; 1), we note that

1� e�b(�(1)) � U (0; 1) ;

which means that in the limit, the highest bid is distributed according to the ex-

ponential distribution. This is not unexpected since indi¤erence between continuing

and quitting in a war of attrition requires that the last remaining other player quits

with a constant hazard rate. In our silent war of attrition model this translates into

the requirement that the highest bid by the other bidders has a constant hazard rate.

Using the previous results on �(k), we get the expectation of the kth highest bid

by evaluating

Eb(k) = E�(k)
�
� ln

�
1� �(k)

��
.

Since

� ln (1� �) = � ln
�
1� eln�

�
= � ln

�
1� e�(� ln�)

�
;

and

� ln
�
�(k)

�
� Gamma (k; 1) ,
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we can derive an expression for Eb(k) in an explicit form:

Eb(k) =
Z 1

0

� xk�1

k � 1!e
�x ln

�
1� e�x

�
dx.

Again, we summarize these results in the following proposition.

Proposition 3 In the symmetric equilibrium of a second-price all-pay auction and

N bidders with independent private types drawn from the same distribution F (�) on
[0; 1], the expectation of the kth highest bid converges to

Eb(k) =
Z 1

0

� xk�1

k � 1!e
�x ln

�
1� e�x

�
dx

as N !1:

We can compute the expectation of the second highest bid:

Eb(2) = 2� �
2

6
� :355.

This shows that the winner makes a considerably lower expected payment in the

second price all-pay auction than in the �rst-price version of the game. The highest

loser pays the same amount as the winner, and in expectation, this exceeds the

payment in the �rst-price all-pay auction.

By comparing the payments across the two types of all-pay auctions, we see that

the rates of convergence towards zero are quite similar. The tenth highest bidder

pays roughly .1% of the value in both auctions.

5.2 All-Pay Auction with Multiple Prizes

In this subsection we analyze the model, where each of the n highest bidders receives

a prize.7 Let the values of the prizes be q1� � q2� � ::: � qn� for a bidder of type

�: We say that this all-pay auction has prize structure q = (q1; :::; qn) : In the limit,

the highest bidders have all valuations arbitrarily close to 1 and as a consequence,

7If we let the number of prizes vary with N with n(N)
N ! x > 0 as N !1; the model becomes

a variant of the large contest models in Olszewski & Siegel (2016).
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the auction is competitive for all �xed n in the sense that the expected rent for each

individual bidder vanishes as N ! 1. Therefore, we must have in the symmetric
equilibrium:

n�1X
m=0

qm+1 Prfb(m+1) � b � b(m)g = b for all b 2 [0; 1];

where b(0) = 1: As in the previous sections, we want to characterize the joint distri-

bution of
�
b(1); :::; b(K)

�
for some K.

In order to specify this distribution, we start with a statistical result about the

number of bidders who believe their probability of having the highest signal exceeds

� 2 (0; 1): We denote this random number of high bidders by X (�;N) and show

that it converges to a Poisson distributed random variable as N !1:

Lemma 1 Fix � 2 (0; 1) and let

�� (�;N) : =
n
� : F (�)N�1 = �

o
and

X (�;N) : = # fi : �i > �� (�;N)g .

Then, as N !1,

X (�;N)
d! X� � Poisson (� ln (�)) .

Proof. By de�nition of �� (�;N),

F (�� (�;N))N�1 = �;

and hence

F (�� (�;N)) = �
1

N�1 .

We have therefore

Pr (�i > �
� (�;N)) = 1� F (�� (�;N)) = 1� �

1
N�1 .

and hence X (�;N) is distributed according to

X (�;N) � Bin
�
N; 1� �

1
N�1

�
:
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Since

N �
�
1� �

1
N�1

�
!

N!1
� ln (�) ;

the result follows from the fact thatBin (n; p) converges to Poisson (�) when n!1,
np! �.

The interpretation of the result is the following. If � is a player�s perceived proba-

bility of having the highest signal in a large auction, then the number of other players

who have an even higher signal is distributed according to a Poisson distribution with

parameter � ln (�) := ' (�). This allows us to calculate the expected winnings �(�)
in the auction for a bidder with perceived probability of winning � :

� (�) =
n�1X
m=0

qm+1 Pr (X� = m) =
n�1X
m=0

qm+1
' (�)m e�'(�)

m!
:

Since the auction is competitive, each bidder bids her expected winnings, i.e. b (�) =

� (�). From Corollary 1, we know that

'(k) := '
�
�(k)

�
� Gamma (k; 1) ;

which gives us the formula for expected payment for the kth highest bidder:

Eb(k) = E�
�
�(k)

�
=

Z 1

0

xk�1

(k � 1)!e
�x

 
n�1X
m=0

qm+1
xme�x

m!

!
dx

=
n�1X
m=0

 
k +m� 1

m

!
qm+1
2k+m

.

Again, we can summarize:

Proposition 4 In the symmetric equilibrium of an all-pay auction with prize struc-

ture q = (q1; :::; qn) and N bidders with independent private types drawn from the

same distribution F (�) on [0; 1], the expectation of the kth highest bid converges to

Eb(k) =
n�1X
m=0

 
k +m� 1

m

!
qm+1
2k+m

.

as N !1:

As an illustration, Figure 1 shows the expected values of 30 highest bids in a

contest with n equally valued prizes with several di¤erent values of n.
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Figure 1: Expected highest bids ॱܾሺ௞ሻ, ݇ ൌ 1,… ,30, for an all‐pay auction with ݊ equally valuable 
prizes. Here 	݊ takes values ݊ ൌ 2 (blue), ݊ ൌ 5 (yellow), ݊ ൌ 10 (green), and ݊ ൌ 20 (red). 


