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Abstract

We introduce a neighborhood structure in a waiting game, where the payoff of
stopping increases each time a neighbor stops. We show that the dynamic evolution
of the network depends on initial parameters and can take the form of either a
shrinking network, where players at the edges stop first, or a fragmenting network
where interior players stop first. We find that, in addition to the coordination
inefficiency standard in waiting games, the neighborhood structure gives rise to
an additional inefficiency linked to the order in which players stop. We discuss
an application to technology adoption in networks and analyze how time varying
subsidy policies can be used to speed up adoption.
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1 Introduction

There is growing evidence that the decision to adopt a new technology is affected by
the decisions of neighbors, i.e. those close either geographically or in terms of social or
technological distance (Foster and Rosenzweig 1995, Conley and Udry 2010, Bandiera
and Rasul 2006, Atkin et al. 2017). One explanation is that adoption creates spillovers
for neighbors that decrease their own adoption costs. These spillovers can be informa-
tional or technological. For instance, the initial adopter trains employees or suppliers
with this new technology and the mobility of workers or the sharing of suppliers spreads
the expertise to connected firms.
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Such environments create incentives for players to wait for their neighbors to adopt.
In this paper we introduce a class of problems, waiting games on networks, that en-
compasses the adoption problem described above. War of attrition games have been
extensively studied, but the neighborhood structure has to this point been ignored. We
show that it leads to a new source of inefficiency in addition to the usual timing in-
efficiency arising in classical war of attrition games, linked to the order of stopping of
players.

To highlight this new source of inefficiency, we use the simplest neighborhood struc-
ture which is the line, where each player has either one or two neighbors. Specifically,
players are organized on line segments of random length and play an infinite horizon
timing game. Each player has to decide when to take an action, we call “stop”. The
benefit of the action for an individual at date t depends on the neighbors’ past actions.
Whenever a player stops, she increases the payoff of stopping of all her neighbors. This
creates incentives for all players to wait in the hope that their neighbor(s) stop before
them, i.e. gives rise to the structure of a waiting game.

Each link between two consecutive players is i.i.d drawn at date 0. The probability
distribution of the network structure is common knowledge, but players do not observe
the realization of the network structure but only their direct neighbors (as in Jackson
and Yariv 2005, 2007 or Galeotti et. al. 2010).1 This implies that a player does not know
which of two possible types a given neighbor is: either the neighbor has one neighbor (i.e.
she is at the end of the line), or two neighbors (i.e. she is inside the line). We restrict
ourselves to symmetric strategies and show that at any point in the game, players share
the same belief about the type of an arbitrary neighbor. The endogenous evolution of
these beliefs is the key aspect of our analysis as we explain below.

Generically, in a symmetric equilibrium of our game, at any given date, only one
type of player mixes between stopping and waiting, while players of the other type
strictly prefer to wait. Two very different dynamic evolutions of the network can emerge
based on parameters of the model, and in particular on the payoffs of the different
types. First, what we call shrinking networks, where players of type 1 (extremities of
the line)2 initially have more incentives to stop and hence the network shrinks over time.
Second, fragmenting networks where players of type 2 (inside the line) initially have more
incentives to stop, which leads to a fragmentation of the network in smaller networks
over time.

1For our applications this assumption captures the idea that players are not aware of the full structure
of the network.

2The convention is to define type k as a type with k neighbors.
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Consider first shrinking networks. Initially, players of type 1 are mixing. As time
passes and the unique neighbor of a player has not stopped, the belief about the type
of the neighbor evolves. Two countervailing forces affect this belief. First, there is the
classic updating of beliefs: since players of type 1 are more likely to stop, as time passes,
the player becomes more confident that the neighbor is of type 2. However, there is
a second countervailing effect, purely linked to the dynamic evolution of the network
structure. Even if the neighbor started off as a type 2, her other neighbor might have
stopped in the meantime, making it possible that she has turned into a type 1. We show
that these two effects perfectly balance each other in the line network, so that the beliefs
that the player is of type 1 stays constant throughout the game and only players at the
extremity of the line mix and do so at a constant rate, as if they were playing a classic
war of attrition with a single player of a given type.

When players of type 2 initially have more incentives to stop, we have the case of
fragmenting networks, where players inside the line stop first and fragment the line into
smaller segments. In the case of fragmenting networks, both effects affecting beliefs
mentioned above go in the same direction. As time passes and a neighbor has not
stopped, players become more confident that she is of type 1. In addition, even if she
started as a type 2, her own neighbor might have stopped, changing her into a type 1.
Thus, as time passes, the belief that the neighbor is of type 2 decreases. Over time the
network fragments into smaller networks. At some date, all players of type 2 will have
stopped and only isolated pairs will remain. These pairs will then play a classical war
of attrition.

Waiting games give rise to a timing inefficiency: players inefficiently delay stopping
in order to benefit from the action of others. We analyze how the timing inefficiency
can be alleviated by different subsidy policies. We first assume that the regulator has
no access to detailed network information and must use a uniform subsidy that is paid
to any player at the moment of stopping. We show that the most effective uniform
subsidy is one that declines steeply over time: letting the subsidy payment be lower
tomorrow than today gives a strong incentive to stop early. We also show that the
network properties matter: in a more connected network, subsidies are more likely to
increase welfare. Finally, we go beyond uniform subsidies and demonstrate that if the
regulator can base subsidy payments on the neighbors’ adoption decisions welfare can
be further enhanced.

A key message of the paper is that the network structure also gives rise to another
source of inefficiency that we call order inefficiency, referring to the order in which
players stop. Players, when they decide whether to stop, do not take into account the
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positive externality they provide to their neighbors. This implies that, in equilibrium,
players inside the line, i.e. with more neighbors, have insufficient private incentives to
stop. There is thus a region of parameters where the equilibrium results in a shrinking
network whereas the first best would be a fragmenting network. We also show that
even in the case of the fragmenting network, the order of exit of players inside the line
is important for total welfare. We distinguish regular fragmenting (where every other
player inside the line exits) from random fragmenting where any player inside the line
is equally likely to stop.

There are many relevant applications of this model and we highlight two more specif-
ically. The first classical application of war of attrition games is to industry shakeouts.
Papers in this literature (Fudenberg and Tirole 1986, Ghemawat and Nalebuff 1985,
1990) ignore the neighborhood structure. In environments where the neighborhood
structure matters (where a link represents technological or geographical proximity), for
instance the micro brewery sector described in Tremblay et. al. (2005), that experienced
periods of rapid entry and subsequent shakeout, our paper highlights that an inefficiency
might occur due to the order of exits in the shakeout phase. The second important ap-
plication, as mentioned at the start of the introduction, is to technology adoption. In
this case, subsidies have often been introduced to solve the timing inefficiencies, as dis-
cussed in the seminal paper by Stoneman and David (1986) who examine subsidies as
instruments to speed up adoption. We show in the last part of the paper that the net-
work structure adds to the effectiveness of such policies. Since every adoption decision
entails a positive externality on all subsequent adopters, the positive welfare effect of
the subsidy propagates through the network.

As Jackson and Zenou (2014) point out, the literature on strategic dynamic games
on networks is still limited, and in particular there are no infinite horizon strategic
timing games on networks. Most interest has in fact focused on repeated games (Raub
and Weesie 1990, Ali and Miller 2013 among others). The core of the mechanism is
that punishment of deviations by one neighbor will also impact the payoff of the other
neighbors and contagion of bad behavior can thus occur.

Leduc et. al. (2017) consider a related problem, but focus on information diffusion
in a two period model. Players need to take an action whose payoff depends on a binary
state. If a player takes the action in period 1, all her neighbors learn the state, and
the player obtains a referral payoff. The authors solve for the mean-field approximation
of the game, as in much of the literature on network diffusion (such as in Jackson and
Yariv 2007), and show that agents with low degree have incentives to take the action
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early while those with higher degrees free ride.3 We are interested in the fully dynamic
game where payoffs depend on the number of neighbors and we solve directly for the
perfect Bayesian equilibrium. This allows us to introduce learning about the network
structure as the game evolves.

The literature on war of attrition games has been applied to many cases, including the
original work on biological competition (Maynard Smith 1974), labor strikes (Kennan
and Wilson 1989), industrial organization (Fudenberg and Tirole 1986). Bulow and
Klemperer (1999) consider a generalization of the classic model to the case of n+k players
competing for n prizes. None of the papers consider the influence of the neighborhood
structure, which is the focus of the current study.

2 Model

There is a countable set of players labeled by i ∈ Z = {...,−1, 0, 1, ...}. Each pair of
consecutive players i and i + 1 are initially connected to each other with probability
χ ∈ (0, 1), independently of all other consecutive pairs. Hence, the players are organized
in a countable set of finite segments, where the length of each segment follows a geometric
distribution. We say that two players are neighbors if they are linked to each other. Each
player can be of type k ∈ {0, 1, 2}, where k denotes the number of her neighbors. We
can express the fraction of the players that are initially of type k in terms of χ as:

q0 = (1− χ)2 ,

q1 = 2χ (1− χ) ,

q2 = χ2. (1)

Players only have to decide when to take an action that we call “stop”. Time is
continuous and the benefit for an individual stopping at date t depends on how many
neighbors she has at that date. If a player stops at time t, and has k neighbors at that
date, her realized payoff is

Π(k, t) = e−rtBk,

where r is the rate of discounting and Bk is the time invariant benefit of stopping for a
player with k neighbors. We are interested in a class of games where Bk is a decreasing
sequence (B2 < B1 < B0). We present foundations for this payoff structure in Section

3There is also a literature on learning from neighbors’ actions, where players take actions repeatedly
but without forward looking strategic behavior, see e.g. Bala and Goyal (1998) and Gale and Kariv
(2003).
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4.
The structure of the neighborhood evolves dynamically. As soon as a player stops,

she exits the game. We represent this as a deletion of all her links. Consider a player
with initially k neighbors, so that initially her payoff if she decided to stop would be Bk.
If one of her neighbor stops, she is left with k − 1 neighbors, and her payoff of stopping
increases to Bk−1. This creates incentives for all players to wait for others to stop.

2.1 Strategies and information

Each player observes her own neighbors, shares a common prior on the network structure
but has incomplete information about the realized structure (as in Galeotti et. al. 2010).
Since the players only observe the behavior of their neighbors, a private history at t for
a player consists of stopping dates of her neighbors up to time t.

It is immediately clear that for a player of type k = 0 who has no neighbors, it is
strictly dominant to stop immediately. For notational simplicity we ignore type k = 0

in the definition of strategies.
Consider the strategy for player i of type k = 1 who initially has one neighbor. A

pure strategy for such a player is simply a stopping time i.e. T i
1 ∈ [0,∞). This stopping

time is conditional on her neighbor still remaining in the game: if the only neighbor stops
at time t < T i

1, i becomes type k = 0 and stops also at time t.
A player of type k = 2 who initially has two neighbors has two components in her

strategy. First, she must choose when to stop conditional on none of her two neighbors
having stopped, i.e. choose T i

2 ∈ [0,∞). If one of the two neighbors stops before T i
2, she

becomes type k = 1 and must choose when to stop conditioning on the time at which
she became type k = 1. Therefore, the other component of a pure strategy is a mapping
T i
21 (τ) : [0,∞) → [0,∞) that defines the time to stop when one of the two neighbors

stops at time τ . This mapping must satisfy T i
21 (τ) ≥ τ for all τ ≥ 0. The entire pure

strategy for player i can hence be written as

T i =
(
T i
1,
(
T i
2, T

i
21 (·)

))
,

and a corresponding behavioral strategy is

σi =
(
σi
1,
(
σi
2,
{
σi
21 (τ)

}
τ≥0

))
,

where σi
1 and σi

2 are probability distributions over [0,∞) and σi
21 (τ) is a probability

distribution over [τ,∞). This definition of strategies implies that two neighbors of a
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player are treated symmetrically.
Given a profile σ of behavioral strategies, the outcome of the game consists of realized

payoffs and stopping dates as described below.
Take any finite segment of players, and proceed through the following steps:
Step 1: For each player i in the line segment, draw the planned stopping date ti from

the appropriate component of the behavioral strategy (from component σi
1 if i has one

neighbor, or from component σi
2 if i has two neighbors). Denote the minimum of these

stopping times across the players by t, and let each player who chose that time stop at t
and get payoff e−rtBk. If, as a result, some of the remaining players becomes type k = 0,
let those players also stop at t and get payoff e−rtB0. Proceed to step 2.

Step n ≥ 2: Amongst those players that remain after step n−1, take all such players
i that were originally type k = 2 but became type k = 1 and draw for them a new
planned stopping time ti from σi

21 (t). For all the other remaining players keep their
planned stopping time unchanged. Then, repeat the same procedure as in step 1, i.e.
take again the minimum of the planned stopping times amongst the remaining players,
remove those players who chose that stopping time and give them appropriate payoffs,
remove all players that became type k = 0. If there are players left, go to step n+ 1.

Since the number of players is finite, all the players will have stopped after a finite
number of steps at well defined dates and obtained their payoffs.

2.2 Beliefs

The probability distribution of the network structure is common knowledge to the play-
ers, but each player only observes her own neighbors. Each player therefore forms an
initial belief on the type of her neighbor(s), either k = 1 or k = 2. Since a link exists
between any two consecutive players independently with probability χ, the initial belief
of an arbitrary player about the type of an arbitrary neighbor is:

p1 = 1− χ,

p2 = 1− p1 = χ.

Since there is one-to-one correspondence between parameter χ and initial beliefs p1

and p2, we eliminate χ from the rest of the analysis and track only the players’ beliefs
about their neighbors’ types. Using (1), we can also express the initial beliefs as functions
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of the initial fraction of different types of players as:

p1 =
q1

q1 + 2q2
,

p2 =
2q2

q1 + 2q2
.

There are two key properties of this initial belief structure, P1 and P2, that are
important for our analysis.

Property P1 (Anonymity): A player i ∈ Z has the same belief on the type of each
of her neighbors (if she has any), and this belief is the same for all i, regardless of her
own type.

Property P2 (Independence): If a player has two neighbors, she believes that
their types are independently distributed.

As time passes, the players update their beliefs on their neighbors’ types based on the
equilibrium strategies. We establish in the following Lemma that the two properties P1

and P2 continue to hold for any date t > 0 as long as players use symmetric strategies.

Lemma 1 With symmetric strategy profiles, P1 and P2 remain satisfied at all dates
t ≥ 0.

This result allows us to summarize the belief structure at time t by a vector p (t) =

(p1 (t) , p2 (t)), where p2 (t) = 1− p1 (t).4

2.3 Equilibrium

Our solution concept is Perfect Bayesian Equilibrium. Throughout the paper we treat
the players anonymously, and therefore concentrate on symmetric strategy profiles. A
strategy profile σ is a symmetric Perfect Bayesian Equilibrium if it is symmetric and (i)
the belief p (t) about a neighbor’s type is derived from σ via Bayes’ rule for all private
histories and (ii) the strategy σ is optimal for any private history given the belief p (t)
and given that all the other players use the strategy σ.

Although an arbitrary strategy profile is a complex object, a symmetric equilibrium
profile can be summarized by the distribution of stopping dates that it induces for any
given neighbor of i conditional on i never stopping. By symmetry and Lemma 1, this

4Note that even if the belief structure can be expressed as this simple object, it implies a belief on the
shape of the entire network. In particular, each player believes that the length of the half-line starting
from a neighbor is geometrically distributed with parameter p2 (t).
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distribution is the same for all neighbors of i and for all i. Let this distribution be
denoted by F . In the following Lemma we summarize a key property of F that holds in
any symmetric equilibrium:

Lemma 2 In a symmetric equilibrium, the stopping date of an arbitrary neighbor has
an atomless probability distribution F with full support on [0,∞).

Lemma 2 allows us to define for all t ≥ 0 the hazard rate of stopping of an arbitrary
neighbor as

γ (t) =
F ′ (t)

1− F (t)
.

In general, the same hazard rate γ can sometimes admit multiple type breakdowns. In
order to reduce this multiplicity, we restrict attention to Markovian equilibria such that
players who are type 1 at date t and who started off as types 2 play the same continuation
strategy from date t regardless of the date at which their neighbor stopped, and also the
same continuation strategy from date t as a player who started off as a type 1 from date
0.

In a Markovian equilibrium, the hazard rate γ can be uniquely broken down by type.
For each k ∈ {1, 2} such that pk (t) > 0, there exists a function λk (t) that gives the
hazard rate of stopping of a player of type k at date t.5 Moreover,

γ (t) = p1 (t)λ1 (t) + p2 (t)λ2 (t) .

In what follows, we will characterize Markovian symmetric equilibria of the model by
directly analyzing the properties of the stopping hazard rates λk for each type k = 1, 2.
We show in Appendix C that our main results extend to non Markovian strategies.

3 Waiting for my neighbors: equilibrium characterization

In our model, the heterogeneity between players is due to their position in the line,
specifically the number of neighbors that they have. To understand the specific role
of the neighborhood structure, we first study a waiting game with heterogenous types,
where the source of heterogeneity is not linked to a particular neighborhood structure.

5For types k such that pk (t) = 0, the function λk (t) is indeterminate.
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3.1 Benchmark with no neighborhood structure

We consider a game between two players who can have one of two possible types: type
1 gets benefit B1 if she stops first and B0 if she stops after the other player and type 2

gets benefit B2 if first and B1 if second (B0 > B1 > B2). Both players know their type
and share a common prior that the other player is of type j ∈ {1, 2} with probability
pj . Consistent with our model with neighbors, the belief about the other player’s type
is independent of one’s own type. We derive the symmetric equilibrium of this game.
The shape of the equilibrium depends on the comparison between µ1 and µ2 where
µj =

rBj

Bj−1−Bj
.

Proposition 1 If µj > µk (either j = 1 and k = 2 or the reverse), there exists a date
tbj such that in all symmetric equilibria:

• For t < tbj only players of type j mix between the actions stop and wait. Both
players expect the other to stop at a rate µj.

• The posterior belief that the other player is of type j, pj(t), is decreasing and such
that pj(tbj) = 0.

• For t ≥ tbj players of type k mix at constant rate µk.

As shown in Proposition 1, in a symmetric equilibrium, only one single type mixes
at any point in time. Indeed, when a player of a given type l ∈ {1, 2} is mixing, she
needs to be indifferent between the cost of waiting, equal to rBl and the expected gain
if the other player stops, equal to (Bl−1 −Bl) that accrues with probability µ, where
µ denotes the rate of stopping of the other player. Since types are not correlated, µ is
independent of the own type and generically only one type can satisfy the indifference
condition

µ (Bl −Bl−1) = rBl. (2)

Proposition 1 then characterizes the timing of actions. Consider the case where
µ1 ≡ rB1

B0−B1
> µ2 ≡ rB2

B1−B2
. Players of type 1 have more incentives to stop and initially

are the only types to mix. The equilibrium mixing rate, as can be seen in equation (2),
has to be such that all players share the belief that the other player will stop at rate
µ = µ1. Note that µ1 is both a function of the belief that the other player is of type 1
and of the mixing rate λ1 of players of type 1. We have specifically µ1 = p1(t)λ1(t). As
time passes and the other player has not stopped, the posterior p1(t) that she is of type
1 decreases. At some date tb1 all types 1 will have stopped. If the two players are still
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active, they are then certain that the other is of type 2. Players of type 2 then start
mixing at a constant rate µ2 as in a classical war of attrition.

3.2 Waiting for my neighbors

We now explicitly introduce the neighborhood structure and the heterogeneity between
players is then due to the position in the line. Types differ in the number of neighbors
they have and thus in terms of payoffs when stopping. The payoffs when stopping are
the same as for the benchmark studied above: type 1 who makes benefit B1 if she stops
first and B0 if she stops after the other player and type 2 who gets benefit B2 if first
and B1 if second.

There are two key differences with the benchmark model. First, for types 2, the fact
of having two neighbors doubles the chances of at least one of them stopping and thus
affects the strategic choices. Second, and more important, the types evolve dynamically:
if the neighbor of a given player is initially a type 2 but her other neighbor stops, she
becomes a type 1. This change in the type of the neighbor is not observed by the player,
but the possibility of such a dynamic evolution affects the beliefs about the neighbor’s
type.

It is important to distinguish two cases depending on the respective values of

γ1 :=
rB1

B0 −B1
and γ2 :=

rB2

2 (B1 −B2)
.

We show that the case γ1 > γ2 is one where the players of type 1 mix first.6 This gives
rise to what we call “shrinking networks” since only the players at the extremities of
a line mix and over time the line gets shorter. On the contrary, in the case γ2 > γ1,
players of type 2 have initially more incentives to mix. This gives rise to what we call
“fragmenting networks”. The initial line is cut at some date into two smaller segments
and this process repeats itself over time.

Recall that in the benchmark model of section 3.1, two cases were distinguished
based on the respective value of µ1 and µ2, which determined which type was mixing
first (here we have γ1 = µ1 but γ2 is different from µ2 since it integrates the fact that
a type 2 has two neighbors in our current setup). However, both cases are qualitatively
equivalent in the benchmark while in the case with a network structure, the two cases
are radically different, due to the dynamic evolution of the network structure.

6In what follows we will use the notation γ for the expected hazard rate of stopping of an arbitrary
player. By extension we use the notation γ1 and γ2 here.
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3.3 Shrinking networks

We start by considering the case γ1 > γ2. As in the benchmark model, only one type
of player can be mixing at any point in time. In this case, players of type 1 have more
incentives to mix and hence stop first.

However, the key difference with the benchmark case is that, as players of type 1 are
mixing, two forces affect beliefs, as reflected in the following dynamic equation:

·
p1 (t) = −λ1 (t) p1 (t) (1− p1 (t))︸ ︷︷ ︸

updating beliefs about initial type

+ γ (t) p2 (t)︸ ︷︷ ︸
probability that type 2 becomes 1

(3)

where, as defined in Section 2, λ1 (t) is the hazard rate of stopping of a neighbor of type
1 and γ (t) is the expected hazard rate of stopping of an arbitrary neighbor (so that
γ (t) = p1 (t)λ1 (t)).

The evolution of beliefs described in (3) reflects the balance between two effects.
First, players update their beliefs about their neighbor’s types based on the fact they
do not see her stopping. Second, the types of neighbors may evolve dynamically since
even if the neighbor initially had two neighbors (probability p2 (t)), her other neighbor
might have stopped in the time interval (probability γ(t)), thus changing her type into
a type 1. The two effects on beliefs go in opposite direction. The first effect makes the
player less confident that the neighbor started off as a type 1 but the second makes it
more likely that she became one over time. The following result examines the balance
between these effects in equilibrium:

Proposition 2 If γ1 > γ2, a Markovian symmetric equilibrium has the following prop-
erties:

1. The belief that a random neighbor is of type 1 remains constant, equal to p1(0)

throughout the game and type 1 players mix at constant rate λ1 =
γ1

p1(0)
.

2. The expected time before an average member of the network stops is given by
E [T ] = (q1 + q2)

1
2γ1

and is increasing in B0, decreasing in B1 and independent of
B2.

Proposition 2 shows that in the Markovian symmetric equilibrium7 the two effects
on beliefs perfectly balance each other in the case of the line. As a consequence, the

7These properties are also satisfied in non Markovian symmetric equilibria, one example of which we
provide in the Appendix C.
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belief that the neighbor is a type 1 stays constant throughout the game and players play
an infinite war of attrition as if they were facing a single player mixing at rate γ1. Only
the players of type 1, by definition positioned at the extremities of the line, mix at any
point in time. Overall, the line shrinks in size over time, hence the terminology. Fur-
thermore, as reflected in result 2, since only type 1 players stop during the entire game,
decreasing their incentives to stop by increasing B0 or decreasing B1 delays stopping.
Similarly, since type 1 incentives are independent of B2, the equilibrium stopping rate
is independent of B2.8

3.4 Fragmenting networks

We now consider the case γ2 > γ1. We show that in this case, players of type 2 initially
have the strongest incentives to stop. As in the previous case the evolution of beliefs
about the neighbor’s type is the result of two effects: updating based on the fact that
the neighbor did not stop and dynamic evolution of beliefs. However in this case both
effects go in the same direction and as time passes it becomes increasingly likely that
the neighbor is of type 1. Formally, the evolution of the beliefs is given by:

·
p2 (t) = −λ2 (t) p2 (t) (1− p2 (t))︸ ︷︷ ︸

updating beliefs about initial type

− γ (t) p2 (t)︸ ︷︷ ︸
probability that type 2 becomes 1

(4)

where λ2 (t) is the hazard rate of stopping of a neighbor of type 2 and γ (t) is the expected
hazard rate of stopping of an arbitrary neighbor (so that γ (t) = p2 (t)λ2 (t)).

As in the benchmark case of section 3.1, p2 (t) is decreasing and at some date t2

players are sure that their neighbor is not of type 2, i.e. p2 (t2) = 0. At that date, types
1 mix exactly as in the benchmark case.

The rate of stopping by types 2 does not however follow the same dynamics as in the
benchmark case. If a type 2 player decides to stop, she gets B2 as in the benchmark case.
When she waits, it is in the hope that one of her two neighbors stops in the meantime,
at which point she will become a type 1 with value V1(t) that varies over time (while it
was constant in the benchmark). Thus the stopping rate of a random neighbor is given
by:

γ (t) =
rB2

2 (V1 (t)−B2)
,

8In the extreme case where B0 = B1 > B2, players stop one by one at date 0, and there is no delay.
Indeed, a type 1 player has nothing to wait for in that case, and it is a dominant strategy for her to stop
at date 0, as soon as she turns into a type 1.
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where the value V1 (t) is defined by the following Bellman equation:

V1 (t) = γ (t)B0dt+ (1− γ (t) dt) (1− rdt)

(
V1 (t) +

·
V 1 (t) dt

)
Indeed, the payoff of a player of type k = 1 at a date t where only types k = 2 are mixing
is composed of the expected payoff in the period dt, which is B0 if the neighbor stops
(probability γ(t)), plus the continuation value. As long as players types k = 1 strictly
prefer to wait, we have V1 (t) > B1, but V1 (t) is strictly decreasing in time.

Proposition 3 If γ2 > γ1, there exists a date t2 such that a (Markovian) symmetric
equilibrium satisfies:

• For t < t2 only types 2 are mixing and the expected rate of stopping of a random
neighbor is γ (t) = rB2

2(V1(t)−B2)
, where V1 (t) is the value function of type 1. We

have B0 > V1 (t) > B1 and
·
V 1 (t) = − rB2(B0−V1(t))

2(V1(t)−B2)
+ rV1 (t) < 0.

• At time t = t2, V1 (t2) = B1 and p2(t2) = 0.

• For t > t2 players of type k = 1 mix at a constant hazard rate γ1.

Furthermore, if p2(0) < 1
2 , types 2 are active for a longer period of time than in the

benchmark case (t2 > tb2).

Compared to the benchmark model, there are two main forces that affect the time
t where the players are sure the other player is not of type 2 (i.e. t2 in the case under
consideration and tb2 in the benchmark model). First, types 2 mix at a lower rate for
two reasons: they have two neighbors, so the chance of at least one stopping is higher
than in the benchmark model. Furthermore, the value obtained if one neighbor stops,
V1, is higher than in the benchmark, B1. Both these effects imply that there are more
incentives to wait and the stopping rate will be lower. At the same time, as time passes,
some neighbors of type 2 become type 1 thus decreasing the incentives to wait. If the
proportion of types 2 is initially small as indicated in the last result of Proposition 3,
the first effect dominates.

The dynamic evolution is very different than in the case of the shrinking network.
Only types 2, situated at the heart of the network as opposed to its extremities, initially
mix. At some point one of them randomly stops. The initial network is then fragmented
in two smaller networks and the same process repeats itself.
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3.5 Order inefficiency

We established above that, in equilibrium, the network behaves as a shrinking network
rather than a fragmenting network if and only if

γ1 ≥ γ2 ⇔ B1

B0 −B1
≥ B2

2 (B1 −B2)

⇔ 2B1 ≥ B2 +
B2

B1
B0 . (5)

We show now that this order of stopping can be socially inefficient. When a player
decides to stop, she provides a positive externality to her neighbors as their own payoffs
from stopping increase. Because players do not internalize this externality, players with
more neighbors might have insufficient incentives to stop. This implies that the players
might in equilibrium behave as in a shrinking network while the first best would be a
fragmenting network, where the players with more neighbors stop first.9

Moreover, the order of exit in the fragmenting case also has an impact on welfare.
There are different possible stopping orders that would result in different degrees of
fragmentation of the network. Consider two different modes of stopping, which we call
regular fragmenting where exactly every second player exits before their neighbors (for
instance even numbered players stop first) and random fragmenting, where any interior
player of type 2 can be the first to stop. Regular fragmenting is the stopping order that
maximizes the number of players that get payoff B2 and minimizes the average distance
between players.10 Random fragmenting is the equilibrium stopping order in the case of
fragmenting networks.

We contrast in Proposition 4 the socially optimal stopping order to the equilibrium
order, where by socially optimal we mean the order that maximizes the sum of the
players’ payoffs ignoring any costs of delay. We show that whenever 2B1 ≥ B2 + B0,
the social planner wants to minimize the degree of fragmentation, i.e. minimize the
number of players that get payoff B2. Then the shrinking network is the best while a
regular fragmenting network is the worst. Conversely, when the condition is violated, the
planner wants to maximize the degree of fragmentation. Then the regular fragmenting
network gives the highest welfare while the shrinking network is the worst. In both
cases the random fragmenting network gives an intermediate level of total welfare. We
summarize this discussion in the proposition below.

9Note that the timing inefficiency is also the result of ignored externalities.
10Obtaining regular fragmenting requires information on the exact network details available to the

planner but not to the players.
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Proposition 4 Depending on the payoff parameters B0, B1, B2:

• If 2B1 ≥ B2+B0, in equilibrium the network behaves as a shrinking network, which
generates the socially optimal order of stopping.

• If 2B1 ∈ (B2 +
B2
B1

B0, B2 +B0), in equilibrium the network behaves as a shrinking
network while the socially optimal order of stopping is regular fragmenting.

• If 2B1 < B2 +
B2
B1

B0, in equilibrium the network is characterized by random frag-
menting while the socially optimal order of stopping is regular fragmenting.

To illustrate the results, consider the case where the initial network is randomly
drawn to be a line of size 5. If players behave as in the shrinking network case, the
resulting aggregate payoff is 4B1 + B0. If players behave as in the regular fragmenting
networks, where the initial player to stop is constrained to be either player 2 or player
4, the resulting aggregate payoff is 2B2 + 3B0. Player 2 by stopping first, increases the
payoff of player 1 from B1 to B0, at a cost of B2−B1. Under the condition 2B1 < B2+B0,
this increases welfare but requires player 2 to internalize this externality. In the case
of the random fragmenting network, with 1 chance out of 3, player 3 exits first, leaving
players 1 and 2 and players 4 and 5 in a shrinking network. In that sense, the random
fragmenting network decreases the degree of fragmentation. If 2B1 < B2 + B0, this
decreases welfare as shown in Proposition 4.11

4 Timing inefficiency and technology adoption in networks

The timing inefficiency, standard in waiting games, is also present when we introduce
the neighborhood structure. We describe it here in the context of the adoption of new
technologies by firms organized in a line. The action “stop” represents here adopt the
technology. When a firm adopts, it decreases its neighbors’ cost of adoption through
either technological spillovers or informational spillovers. In this context, we study the
effect of subsidy programs aimed at speeding up adoption. Many countries have in
place large scale subsidy programs to support adoption of technologies. While a variety
of reasons can justify such subsidy programs, we highlight in this paper the role of
subsidies to correct the inefficiencies linked to coordination failures.12

11Two extreme cases are of interest. In the case where B0 = B1 > B2, the first case of Proposition 4
holds. In the case where B2 = B1 < B0, the third case of Proposition 4 holds.

12Of course, different motivations drive public intervention in these different areas. The main justifica-
tion for subsidies in the case of environmentally friendly technologies, and to some extent health related
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4.1 Application of the model to adoption of technologies

We first examine how our model applies to adoption of technologies and argue that
shrinking networks are more relevant in this case.

Consider a situation where spillovers between neighbors are technological, so that a
link represents technological proximity between two members of the network.13 Upon
adoption, the adopting firm trains employees and potentially trains suppliers if the new
technology affects the interactions with suppliers. We know that there is large mobility
of skilled labor across firms in the same technological areas and that firms situated close
to each other often share suppliers. Both effects imply that adoption by one firm may
reduce the adoption costs of its neighbors (Jaffe et. al. 1993, Almeida and Kogut 1999).

In this application, a player is characterized by two state variables: a, the number of
active neighbors (those who have not yet adopted) and na, the number of inactive neigh-
bors (those who adopted in the past and provided spillovers). The number of inactive
neighbors determines the payoff when stopping while the number of active neighbors
impacts the incentives to wait. However, in our model, we allow for a single state vari-
able k, the number of neighbors. The results we obtained directly apply to the context
of technology adoption as described above if we assume that all players start out with
the same number of neighbors, i.e. a+na = 2. In this case, keeping track of the number
of active neighbors is sufficient, since na = 2 − a. We show in Appendix B3 that the
equilibrium structure that we identify in Section 3 is preserved if we do not impose the
restriction a+ na = 2 and consider the general case with two state variables. The main
difference lies in the transitions from one state to another when a neighbor adopts, i.e.
moves from being active to inactive.

Consider as an illustration the following specification of payoffs. Suppose the time
invariant benefit of adopting the technology is given by B and denote ca the cost of
adoption for a player who does not benefit from spillovers. The adoption by one neighbor
reduces the cost by a factor σ1, and the next adoption reduces the cost further by another
factor σ2. The benefit of adoption for a player with na inactive neighbors (who have
already exited) is thus given by B− (

∏na
l=1 σl) ca. In the case of 2 neighbors, this implies

B2 = B − ca, B1 = B − σ1ca and B0 = B − σ1σ2ca, since having no active neighbors
directly implies that there are 2 inactive neighbors who already provided spillovers.

products, is the internalization of an externality. For agricultural techniques, as reported in Dufflo et al.
(2011), there is much less consensus on the source of market failure justifying state intervention. Some
cite informational problems while others invoke behavioral biases.

13Informational spillovers, due for instance to the fact that firms can observe the adoption techniques
used by their neighbors, are formalized in Appendix B1.
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Section 3 established that in equilibrium, the network behaves as a shrinking network
if and only if γ1 > γ2. Using the parametrization of profits introduced above, we
conclude that the condition is satisfied under fairly general conditions on σl. This is the
case for instance if σl is constant, since then γ1 = r(B−σ)ca

σ(1−σ)ca
> γ2 = r(B−ca)

2(1−σ)ca
. To be in

the case of the fragmenting network requires σ1 to be very small relative to σ2, which
appears unlikely.14 The shrinking network case also seems to be the most relevant case
empirically: speed of technology diffusion is often described using measures of distance
covered by year (see the survey by Geroski 2000).

We thus restrict attention in this section to shrinking networks and we study the effect
of subsidy programs aimed at speeding up adoption. To guarantee that the equilibrium
is always a shrinking network, we assume throughout this section that B2 is sufficiently
low relative to B0 and B1 so that players of type 2 never want to adopt before type 1
players.15

4.2 Uniform subsidies

We start with the assumption that the regulator cannot identify the types of individual
players and hence offers a uniform subsidy payment to any player that adopts at time
t. We set the stage by considering the simplest policy, that we call permanent subsidy
policy, where a fixed subsidy s > 0 is given to a player at the moment of adoption.
We will then consider a more general class of time varying policies, where the regulator
commits to a path s := {s (t)}∞t=0, where payment s (t) is given to a player that adopts
at time t. Finally, we ask how the possibility of random expiration of a policy affects
welfare.

Typically there is a deadweight loss of funds raised to finance such subsidy programs.
To calculate overall welfare we thus assume throughout the analysis of the different
subsidy programs that, for a given subsidy s awarded, the social cost is given by (1+α)s,
where parameter α > 0 measures the welfare loss associated with raising and transferring
funds. We will assume throughout the analysis that any subsidy payment must be
positive.

To define the social welfare of a subsidy policy, let us consider a player i arbitrarily
picked from the population of players, and denote by B (i) and t (i) the random payoff
and the time of adoption of that player induced by the policy. The social welfare induced

14Could be the case if spillovers come from suppliers and a sufficient mass of firms needs to adopt to
give incentives for the supplier to also invest in the new technology.

15A sufficient condition is that B2 < 3
2
B1 − 1

2
B0. Note that as long as this condition holds, none of

the results depend in any way on the exact value of B2.
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by a subsidy policy s is

W (s) = Ee−rt(i) [B (i)− αs (t (i))] , (6)

where the expectation is taken over i, B (i) and t (i).

4.2.1 Deterministic subsidy policies

We start by studying the benchmark case of a permanent subsidy set at some s > 0.
From the players’ perspective this just amounts to replacing payoff terms Bk with Bk+s,

k = 0, 1, 2. We showed in section 3.3 that for shrinking networks, the belief that the
neighbor is of type 1, the mixing rate of a type 1 player and the expected stopping rate
of a random neighbor remain constant throughout the game. In particular the hazard
rate of adoption by an arbitrary neighbor is now given by:

γpe (s) = p1 (t)λ
pe
1 (s) =

r (B1 + s)

B0 −B1
. (7)

This is linearly increasing in s so we see that the subsidy speeds up adoption as intended.
The downside is that each adoption induces a social loss of αs at the time of adoption.

Denote by W pe (s) the social welfare of the permanent subsidy s. We compute (6)
in the Appendix for the permanent subsidy and obtain:

W pe (s) = q0B0 +
2 (B1 + s)

B0 +B1 + 2s

(q1
2
B0 +

(q1
2

+ q2

)
B1

)
−αs

(
q0 +

2 (B1 + s)

B0 +B1 + 2s
(q1 + q2)

)
. (8)

The expression can be interpreted as a decomposition of (6). The first line in the
expression gives Ee−rt(i)B (i). The term q0B0 corresponds to types k = 0 who adopt
immediately at t = 0. The term

( q1
2 B0 +

( q1
2 + q2

)
B1

)
gives the expected payoff for the

rest of the players. Since in each line segment there are initially two players of type k = 1

and only the last player to adopt obtains payoff B0, the fraction of players that get B0

is q1/2. The rest get payoff B1. The multiplier 2(B1+s)
B0+B1+2s is the expectation of e−rt(i)

conditional on a player not being type k = 0 initially. This term is increasing in s and
captures the benefit of the subsidy. The second line in the expression gives Ee−rt(i)αs,
and has a similar interpretation. This term captures the cost of the subsidy policy and
is increasing in s.

We show in the appendix that W pe (s) is strictly concave and (W pe)′ (0) > 0 for α
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low enough. Since W pe (0) gives the welfare without any subsidy, this implies that for
sufficiently low α there exists an optimal permanent subsidy level that increases welfare.

Allowing the subsidy to vary in time can increase welfare. The key intuition is that
letting the subsidy payment be lower tomorrow than today increases the opportunity
cost of delay and hence increases incentives to adopt immediately. Based on this logic,
we focus our attention to policies where the subsidy payment decreases smoothly over
time. Formally, assume that the subsidy policy s is continuous, differentiable almost
everywhere, and ·

s (t) < 0 whenever s (t) > 0.16

We look for an equilibrium, where type k = 1 is indifferent at all times between
adopting and waiting, and adopts with a time varying hazard rate λsm

1 (t). As before,
p1 and p2 remain constant at their initial values p1 (0) and p2 (0) throughout, and the
resulting hazard rate of adoption by an arbitrary neighbor can be written as

γsm (t) = p1 (0)λ
sm
1 (t) .

The indifference condition for type 1 between adopting at t and t+ dt is:

B1 + s (t) = γsm (t) dt (B0 + s (t)) + (1− γsm (t) dt) (1− rdt)
(
B1 + s (t) +

·
s (t) dt

)
.

Solving this for γsm (t) gives:

γsm (t) =
r (B1 + s (t))− ·

s (t)

B0 −B1
. (9)

We see from this equation that both a positive current level of subsidy (s (t) > 0 ) and
a negative rate of change in the subsidy path ( ·s (t) < 0) increase the rate of adoption.
Hence, the decline in the subsidy path has two counteracting welfare effects. On one
hand, ·

s (t) < 0 boosts the current rate of adoption (current γsm (t) is higher). On the
other hand, ·

s (t) < 0 reduces the future rate of adoption (future s (t) and thereby future
γsm (t) is lower). We analyze this trade-off in the Appendix, and show that the former
effect dominates: it is best to let the subsidy decline as fast as possible.

We show that there exists a well defined upper bound for welfare for any subsidy
path that starts from a given level s, and we denote this upper bound by W sm

∞ (s). We
show that this upper bound is approximated by a policy that declines from s to zero

16It can be shown that the regulator can never benefit from letting the subsidy increase over time.
Neither can the regulator benefit from using a discontinuous subsidy path. The assumption that s (t)
is strictly decreasing is made only to simplify the dynamic programming argument that we use in the
Appendix to compute the welfare of a policy. Of course, welfare of a weakly decreasing policy can be
approximated arbitrarily closely with some strictly decreasing policy.
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arbitrarily steeply. The key to understand this result is to note that even if in the limit
the policy is in place only for a negligibly short time, the players who according to (9)
respond by a hazard rate that scales linearly in the rate of decline will adopt with a
non-negligible probability before s hits zero. We show that the limiting probability of
“immediate adoption” is given by 1 − e−

2s
B0−B1 .17 Hence, even if the policy operates

a very short time, it manages to induce a non-negligible fraction of players to adopt
immediately. Of course, in reality it is impossible to induce an arbitrarily steep decline
and it is important to understand how intermediate cases perform. We show that any
declining subsidy that starts from s will induce a higher social welfare than a permanent
subsidy set at s.

We derive in the Appendix an explicit formula for W sm
∞ (s) and note that it is strictly

concave with lims→∞W sm
∞ (s) = −∞. Hence, there is a unique maximizer s∗ ≥ 0 for

W sm
∞ (s). The maximal value W ∗ is an upper bound for the welfare that any uniform

subsidy policy can achieve:
W ∗ := max

s≥0
W sm

∞ (s) .

We summarize the discussion in the following proposition:

Proposition 5 There exist thresholds 0 < αpe < α∗ such that:

1. If α < αpe, permanent subsidies increase welfare and there exists some optimal
permanent subsidy level s > 0. If α ≥ αpe, no permanent subsidy improves welfare.

2. If α < α∗, declining subsidy policies increase welfare. If α ≥ α∗, no declining
subsidy improves welfare.

3. For any s > 0, any declining subsidy with initial level s achieves higher welfare
than the permanent subsidy set at s.

4. There exists a tight upper bound W ∗ for declining subsidy policies. No policy
obtains exactly W ∗, but a subsidy that declines steeply from some s∗ > 0 to zero
gets arbitrarily close.

Finally we examine how the properties of the network influence the effectiveness of
subsidy policies. Recall that we have denoted by χ the probability that players i and i+1

are initially connected. This parameter is a measure of how connected the network is.
We show in the next proposition that connectedness increases the potential for declining
subsidies to increase welfare.

17This is the probability with which a constant hazard rate ξ · 2s
B0−B1

produces an arrival before time
1/ξ for any ξ > 0 and hence also in the limit ξ → ∞.
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Proposition 6 The more connected the network, the more likely it is that there exists
a declining subsidy policy that increases welfare: α∗ is increasing in χ.

4.2.2 Randomly expiring subsidy

So far we have considered deterministic subsidy policies. In reality there are often
significant uncertainties about how long these subsidies will be in effect. This could
be due to political turnover or even economic shocks that can force the interruption of
subsidy programs. Such uncertainty will reduce the value of waiting, and hence may
potentially increase the incentives to adopt quickly.

To illustrate the effect of random expiration as clearly as possible, we consider the
simplest case, where a permanent subsidy expires at a constant hazard rate. We show
that this leads to a welfare improvement over a deterministic permanent subsidy, but
cannot match the social value of a deterministically declining subsidy policy.

Suppose that a subsidy is set at level s > 0, but expires at some random time that
is exponentially distributed with parameter κ. Any player that adopts before expiration
gets payoff Bk + s, while a player that adopts after expiration gets Bk. We derive
an equilibrium, where type k = 1 stops at a constant rate λra

1 (s, κ) until expiration
(after expiration, the game continues as the original game without any subsidies). This
adoption rate induces an arbitrary neighbor to adopt at rate:

γra (s, κ) = p1 (0)λ
ra
1 (s, κ) .

To derive the equilibrium value of γra (s, κ), note that type k = 1 must be indifferent
between stopping at t and t+ dt:

B1 + s = γra (s, κ) dt (1− rdt) (B0 + s) + κdt (1− rdt)B1

+(1− γra (s, κ) dt) (1− κdt) (1− rdt) (B1 + s) .

The equilibrium stopping rate of an arbitrary neighbor is thus given by:

γra (s, κ) =
r (B1 + s) + κs

B0 −B1
. (10)

We see from this equation that increasing κ induces a higher rate of adoption.
We compute in the Appendix the total welfare of this policy, denoted W (s;κ), and

show that it is strictly increasing in κ. This implies in particular that the highest welfare,
denoted W ra

∞ (s), is obtained in the limit κ → ∞ and the lowest level is obtained when
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κ → 0, where the welfare converges to the level obtained with the permanent subsidy.
We also show that W (s;κ) is strictly concave in s so that for a fixed κ there is a uniquely
optimal level of subsidy.

Notably, both a randomly expiring policy and a smoothly declining policy yield the
highest social welfare in the limit, where the policy is in effect only for a vanishingly
short time. This stems from the fact that in both cases magnifying the rate of decline
increases linearly the hazard rate of adoption, as seen in (9) and (10), which implies
that in the limit there is a non-negligible fraction of players that adopt “immediately”,
i.e. before the policy is removed. However, this fraction is different in the two cases.
Denote by Φra and Φsm the limit (expected) fraction of players that stop before the
policy expires in case of randomly expiring and smoothly declining policies, respectively.
We show in the Appendix that:

Φra = q0 + (q1 + q2)
1

1 + B0−B1
2s

<

Φsm = q0 + (q1 + q2)
(
1− e−

2s
B0−B1

)
.

There is another difference between the two limiting policies. In the case of randomly
expiring policy, every player that adopts “immediately” pays s, while in the smoothly
declining policy every player that adopts “immediately” pays on average a fraction of s
(we compute this fraction explicitly in the Appendix and show that it is somewhat more
than half of initial s). Both of these differences favor the smoothly declining policy, and
we conclude that W sm

∞ (s) > W ra
∞ (s). We summarize our discussion in the proposition

below:

Proposition 7 A subsidy set at level s > 0 that expires at rate κ ≥ 0, induces total
welfare W (s;κ) with the following properties:

• W (s;κ) > W pe (s) for all κ > 0,

• W (s;κ) is strictly increasing in κ with W (s; 0) = W pe (s) and limκ→∞W (s;κ) :=

W ra
∞ (s) < W sm

∞ (s).

Figure 1 illustrates the welfare comparison between different uniform subsidy poli-
cies. The three uniform subsidy policies (permanent, smoothly declining, and randomly
expiring) are drawn as a function of initial subsidy level s, where the randomly expiring
policy is in the limit κ → ∞, and the smoothly declining policy is in the limit, where
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Figure 1: Comparing subsidy programs. Parameter values are: B0 = 2 , ��B1 = 1,
α = 0.1, q0 = 0.04, �q1 = 0.32, q2 = 0.64

the decline is infinitely fast. Note that the optimal level of s is different in each policy.
The upper bound for any policy is W ∗, which is the maximum value of W sm

∞ (s).
One can of course ask if a more general subsidy policy combining random expiration

with a smoothly declining policy could achieve more than any deterministic declining
policy. We analyze such policies in Appendix D and show that the answer is negative:
the total welfare remains bounded from above by W ∗. Random expiration serves as a
substitute for declining subsidies to increase the current stopping rate, but does so less
efficiently for the two reasons highlighted above.

4.3 Reward when a neighbor adopts

So far we have considered uniform subsidy policies, where a given subsidy is paid to
any player that adopts at a given time. The reason for focusing on such policies is the
implicit assumption that the regulator does not have access to detailed neighborhood
information. In some situations it may however be possible, for example by relying on
the agents’ self reporting, to base subsidy payments on the neighbors’ adoption decisions.
This may in effect allow the regulator to target subsidies to certain type of players only.

To demonstrate the potential of such policies, we analyze a neighbor reward policy,
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where a fixed reward m > 0 is given to any player at the time the first of her neighbors
adopts after she has adopted herself. The key observation is that by using such a policy
the regulator may target a subsidy payment to type k = 1 only. This has two benefits
over a corresponding uniform policy: 1) the subsidy payment need not be paid to types
k = 0 who adopt immediately anyway, 2) a type k = 1 has an increased incentive to
adopt quickly since she misses the subsidy payment if her neighbor stops before her.

When B0−B1 ≤ m ≤ B0−B2, there is an equilibrium where agents of type 1 adopt
immediately, triggering an instantaneous cascade of adoptions. All levels of reward
within this range are dominated by m = B0 − B1, which achieves the same adoption
pattern than the higher levels at a lower cost. This level of reward achieves the total
welfare

Wna (m) = B0 − (1 + α)
(
q2 +

q1
2

)
(B0 −B1) .

For a reward m ≤ m, we look for an equilibrium as in the shrinking networks game,
where the belief p1 that the neighbor is of type 1, the mixing rate λna

1 (m) of a type 1
player and the expected stopping rate of a random neighbor γna (m) = p1 (0)λ

na
1 (m)

remain constant throughout the game. In that case, the policy is equivalent, from the
point of view of the agents, to replacing payoff terms B1 with

B1 + (1− p1 (0))
λna
1 + γna

λna
1 + γna + r

m+ p1 (0)m.

In particular the hazard rate of adoption by an arbitrary neighbor must then satisfy

γna =
r
(
B1 + (1− p1 (0))

λna
1 +γna

λna
1 +γna+rm+ p1 (0)m

)
B0 −

(
B1 + (1− p1 (0))

λna
1 +γna

λna
1 +γna+rm+ p1 (0)m

)
=

r
(
B1 +

γna
1 (1+p1(0))+r(p1(0))

2

γna
1 (1+p1(0))+rp1(0)

m
)

B0 −
(
B1 +

γna
1 (1+p1(0))+r(p1(0))

2

γna
1 (1+p1(0))+rp1(0)

m
) .

Rearranging this expression, we see that for any m ∈ [0,m) , the equilibrium adoption
rate of a neighbor γna is the unique positive solution of the equation

γna
(
(B0 −B1) (γ

na
1 (1 + p1 (0)) + rp1 (0))−

(
γna1 (1 + p1 (0)) + r (p1 (0))

2
)
m
)

−rB1 (γ
na
1 (1 + p1 (0)) + rp1 (0))− rm

(
γna1 (1 + p1 (0)) + r (p1 (0))

2
)

= 0.
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The left-hand side is increasing in γna for γna > 0 and decreasing in m, so it follows
that the function γna (m) is increasing in m. For m = 0, γna (m) = rB1

B0−B1
and as m

approaches m, γna (m) goes to infinity. From the point of view of both the agents and
the planner, the policy m is equivalent in terms of payoff to a discriminating permanent
subsidy

s∗ =
γna1 (1 + p1 (0)) + r (p1 (0))

2

γna1 (1 + p1 (0)) + rp1 (0)
m

that is given on the date of adoption exclusively to adopting type 1 agents, not to type
0 agents. As we show formally in the proof of the following result, such a discriminating
subsidy policy can provide adoption incentives to type 1 agents at a lower cost than a
non-discriminating subsidy policy. We thus have:

Proposition 8 For any permanent subsidy s > 0, there exists a neighbor reward m ∈
[0,min {B0 −B1, s}] that yields a greater social welfare than the permanent subsidy s.

For simplicity, we have considered a constant reward m to demonstrate the potential
of neighbor reward policies to improve upon a constant uniform subsidy. One could in
principle also design neighbor reward policies that improve upon time varying uniform
policies. This could be done using a time-varying neighbor reward policy m(t), where
a player who adopts at time t will get a reward m(t) at the moment when one of her
neighbors adopts. By choosing m(t) appropriately, one could guarantee that the expected
payoff of an adopting player of type k = 1 exactly matches a given time varying subsidy
policy s(t). This would in effect allow the designer to create a declining subsidy policy
targeted for types k = 1 only.

5 Conclusion

In this paper we have studied a waiting game with a network structure, highlighting the
application to the adoption decisions of firms that can benefit from positive spillovers
due to adoption of neighbors. We have analyzed how different subsidy policies can be
used to mitigate the timing inefficiency in such a context. We have also shown that
the neighborhood structure gives rise to an additional inefficiency on top of the timing
inefficiency standard in waiting games: an inefficiency in the stopping order. This order
inefficiency is due to the fact that players do not internalize the positive externalities
they can impose on their neighbors by adopting first.

In order to highlight the special dynamics of stopping and the new source of ineffi-
ciency due to the neighborhood structure, we have focused our attention to the simplest
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possible network structure, the line. It could be the object of interesting future work to
extend our results to larger networks. Our current model clearly cannot capture some
aspects of networks that could be relevant. For example, real networks often have cycles.
Adding such features in the model will be challenging, since it requires modifying our
modeling approach, where every player believes the type of each of her neighbors to be
identically and independently distributed. Addressing such issues is left for future work.
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Appendix A: Proofs

Proof of Lemma 1
As explained in the main text, P1 and P2 hold at t = 0.

We first prove that P2 is satisfied at all histories on path. Consider player i and a
history at date t, on path for this player, at which i has not stopped. The type at date t

of each neighbor j of i is affected only by the actions of the set N i.j
s of agents (excluding

i, but including j) that are indirectly connected to i through j at dates s ∈ [0, t] , (and of
course by the strategy of player i). For any two distinct neighbors j and j′ of i, and for
all s, we have N i,j

s ∩N i,j
s = ∅. Thus the strategies of agents in N i.j

t are independent across
all neighbors j, conditionally on i having not stopped until date s, because the strategies
of the players are not correlated. Since player i updates his beliefs according to Bayes’
rule, and since player i believes at date 0 that his neighbors’ types are independently
distributed, it follows that at date t, player i still believes that the types of her neighbors
are independently distributed. This proves that P2 is satisfied at any history on path
for player i.

We now prove that P1 is satisfied at all histories on path. Let i and i′ be two
distinct agents, with neighbors j and j′. For all s ∈ [0, t] , let Gi,j

s the set of links of
the line that links the agents in N i,j

s and let Gi′,j′
s be the analogous object for agents

in N i′,j′
s . Because conditions P1 and P2 hold at date 0, and because the beliefs of the

agents at that date are identical, it follows that the belief of player i about the structure
of Gi,j

0 is identical to the belief of player i′ about the structure of Gi′,j′

0 . That is, these
two agents have identical beliefs about the sequence of links, ignoring the labels of the
agents in those structures. Then, because Gi,j

t (respectively Gi′,j′
s ) is only affected by the

actions of the players in the line
(
N i,j

s , Gi,j
s

)
(respectively in the line

(
N i′,j′

s , Gi′,j′
s

)
) and

that these lines are identically distributed at all date s < t and all player’s strategies are
independent, it follows that

(
N i,j

t , Gi,j
t

)
and

(
N i′,j′

t , Gi′,j′

t

)
are identically distributed as

well.

Proof of Lemma 2
Consider an arbitrary symmetric equilibrium σ and let F be the distribution of

stopping dates of an arbitrary neighbor of an arbitrary player i conditional on i never
stopping. Let T ∈ R∪{+∞} be the least upper bound of the support of F . We prove
the lemma through the following steps:

1. The cdf F has no atoms. By contradiction, suppose that F has an atom at date t.

Then consider a realization of the equilibrium outcome, where player i of type k ≥ 1
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stops exactly at date t. Since F has an atom at t, i expects each of his neighbors
to stop at date t with positive probability. It is then a profitable deviation for her
not to stop at date t, but rather at date t + dt, as the waiting cost of doing so is
proportional to dt whereas the expected gain of delaying is bounded from below
by (F (t+)− F (t−)) (Bk−1 −Bk) > 0. A contradiction.

2. There is no interval of positive length included in [0, T ] over which F is constant.
By contradiction, suppose that t and t are such that 0 ≤ t < t < +∞, and F is
constant on

[
t, t
]
, but not on a right-neighborhood of t. This implies that there is

at least one type k such that λk (t) > 0 in a right neighborhood of t. Consider a
realization of the equilibrium outcome, and suppose that player i of type k with at
least one neighbor stops at date t+ ε, where ε is arbitrarily small. Then stopping
instead at date t (at which the type of i was the same) would have been a profitable
deviation for player i. Evaluated at date 0, the cost of doing such a change is
approximately equal to γ (t) (Bk+1 −Bk) e

−r(t+ε)ε, which is small as ε goes to 0.

Meanwhile, the benefit of doing so is bounded below by Bk+1e
−r(ε+t−t) > 0,which

exceeds the cost. A contradiction.

3. It must be that T = +∞. To see this, suppose by contradiction that T < +∞. In
a realization of the outcome, suppose that an player i stops at date T −ε. Since she
knows that all remaining neighbors will exist between T − ε and T, it is well worth
delaying stopping after date T. By doing so, player i strictly gains by stopping ε

periods later, the cost of which is bounded above by e−rtBkε and the benefit of
which is bounded below by e−rT (Bk−1 −Bk) > 0. Thus it must be that T = +∞.

Proof of Proposition 1
We prove the result in the case µ1 > µ2. The other case is perfectly symmetric.
In a symmetric equilibrium, each player faces the same probability distribution for

the other player’s stopping time, which we denote by F (t), as in the main model. By
the same arguments as in Lemma 2, the distribution has no atoms, and its support is
[0,∞). We may hence describe the equilibrium by hazard rates of the two types, λ1 (t)

and λ2 (t), where at least one of them is non-zero for each t ≥ 0. Letting p1 (t) denote
the posterior probability at t that the other player is of type 1, we have

f(τ)

(1− F (τ))
= p1 (t)λ1 (t) + (1− p1 (t))λ2 (t) .
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The expected payoff for type j of the strategy “stop at time τ if the other player has
not yet stopped” is given by:

Wj(τ) =

[∫ τ

0
e−rt (Bj−1) f(t)dt+ (1− F (τ))e−rτ (Bj)

]
.

Differentiating this, we have

dWj (τ)

dτ
= e−rτBj−1f(τ)− f(τ)e−rτBj − r(1− F (τ))e−rτBj ,

and it follows that

dWj (τ)

dτ
> (=) (<) 0 ⇐⇒ f(τ)

(1− F (τ))
> (=) (<) r

Bj

Bj−1 −Bj
≡ µj .

For a player of type j to mix in an interval [t, t′], he must be indifferent between stopping
at any date τ ∈ [t, t′], and we must have:

dWj (τ)

dτ
= 0 ⇐⇒ f(τ)

(1− F (τ))
= µj .

Since µ1 ̸= µ2, only one type can be mixing in an interval. Suppose that type j mixes
in some interval [0, t′] and the other type k ̸= j is willing to delay. Then we must have

dWk (τ)

dτ
≥ 0 ⇐⇒ f(τ)

(1− F (τ))
≥ µk

for τ ∈ [0, t′]. Since µ1 > µ2, it must be that the type mixing initially is type j = 1 and
the type that is waiting is k = 2, and so

f(τ)

(1− F (τ))
= p1(t)λ1(t) = µ1.

The updated belief that the other player is of type 1 is then given by Bayes’ rule:

p1(t+ dt) =
p1(t)(1− λ1(t)dt)

p1(t)(1− λdt) + (1− p1(t))

So that

p1(t+ dt)− p1(t)

dt
=

1

dt

p1(t)(1− λ1(t)dt)− p1(t)(p1(t)(1− λ1(t)dt) + (1− p1(t)))

p1(t)(1− λ1(t)dt) + (1− p1(t))
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Taking limits we have:
·
p1 (t) = −λ1(t)p1 (t) (1− p1 (t)) .

Since µ1 = p1(t)λ1(t), we can reexpress as:

·
p1 (t) = −µ1 (1− p1 (t)) .

The solution of this differential equation is:

1− p1 (t) = (1− p1 (0))e
−µ1t,

and so p1 (t) is strictly decreasing over time. Thus there exists a time tb1 such that
p1(t

b
1) = 0, which we can solve as tb1 = − ln(1−p1(0))

µ1
. After that date only players of

type 2 are left, and the continuation game is a standard complete information waiting
game with the unique symmetric equilibrium where the players mix at constant rate
λ2 (t) = µ2.

Proof of Proposition 2
By the same argument as in the proof of Proposition 1, there must be some initial

phase [0, t′] during which type 1 randomizes and type 2 waits, and where

γ (t) = λ1 (t) p1 (t) = γ1.

We next establish the result that as long as type 1 randomizes and type 2 waits,
p1(t) remains constant, and so the initial phase never ends. Suppose that type 1 stops
at rate λ1 (t) and type 2 waits so that λ2 (t) = 0. We define two events:

• NE (no stopping) the event that no stopping takes place in the interval [t, t+ ϵ].

• CS (change state) the event that the neighbor changes state during the interval
[t, t+ ϵ], which can only mean that his other neighbor stopped, i.e. he moved from
being a type 2 to a type 1.

Using these notations, we have:

p1(t+ ϵ) =
P [k = 2 ∩NE ∩ CS]

P [NE]
+

P [k = 1 ∩NE ∩ CSC ]

P [NE]

=
p2(t)(1− λ1(t)ϵ)γ1 (t) ϵ

P [NE]
+

P [NE|k = 1 ∩ SCC ]P [k = 1 ∩ SCC ]

P [NE|k = 1]p1(t) + (1− p1(t))
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We now examine:

p1(t+ ϵ)− p1(ϵ)

ϵ
=

p2(t)(1− λ1(t)ϵ)γ1 (t)

P [NE]
+

1

ϵ

p1(t)(1− λ1(t)ϵ)− p1(t)(p1(t)(1− λ1(t)ϵ) + (1− p1(t)))

P [NE]

=
p2(t)(1− λ (t) ϵ)γ1 (t)

P [NE]
+

1

ϵ

p1(t)(1− p1(t))λ (t) ϵ

P [NE]

=
p2(t)(1− λ1(t)ϵ)γ1 (t)

P [NE]
+

p1(t)(1− p1(t))λ1(t)

P [NE]
.

Taking the limit when ϵ goes to zero, P [NE] converges to one and so

·
p1(t) = γ1 (t) (1− p1(t))− λ (t) p1(t)(1− p1(t)).

Finally, by definition, γ1 (t) = λ1 (t) p1 (t), so that

·
p1 (t) = 0.

Given that p1(t) and γ1 (t) = γ1 do not depend on time, the rate of mixing of types 1,

λ1(t), also remains constant and is equal to λ1 = γ1
p1(0)

. This establishes the first part
of the proposition.

We next derive the average time before stopping of a random member of the network.
If the player is of type 0 (probability q0), she stops immediately. If she is of type
1 (probability q1), her stopping rate is λ1 + γ1, since she stops either because of her
own mixing or because a neighbor stops. Finally, if she is of type 2, she first needs to
transition to being a type 1, which occurs at a rate 2γ1, then follows the same dynamic
as a type 1. Overall the expected waiting time is given by:

E [T ] = q00 + q1
1

λ1 + γ1
+ q2

[
1

2γ1
+

1

λ1 + γ1

]
= q2

1

2γ1
+ (q1 + q2)

1

λ1 + γ1
.

We showed above that λ1 =
γ1

p1(0)
. Furthermore, we showed in Section 2.2 that

p1 (0) =
q1

q1 + 2q2
.

Replacing these in the expression for E [T ], we get:

E [T ] = (q1 + q2)
1

2γ1
.
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Being inversely proportional to γ1, E [T ] is increasing in B0, decreasing in B1 and in-
dependent of B2. Furthermore, since γ1 is independent of q1 and q2, E [T ] is overall
increasing in q1 + q2.

Proof Proposition 3
Following the same arguments as in Proposition 2, we can establish that while players

of type 2 are mixing, the beliefs evolve according to:

·
p2(t) = −γ(t)p2(t)− λ2(t)p2(t)(1− p2(t)).

Given that γ(t) = λ2(t)p2(t), we obtain that

·
p2(t) = −γ(t),

i.e.
p2 (t) = p2 (0)−

∫ t

0
γ (s) ds.

We see that p2 (t) is a strictly decreasing function with derivative bounded away from
zero, so there is a date t2 such that p2 (t2) = 0.

As we argued in the main text, we have

γ (t) =
rB2

2 (V1 (t)−B2)
,

where the value V1 (t) is defined by the following Bellman equation:

V1 (t) = γ (t)B0dt+ (1− γ(t)dt) (1− rdt)

(
V1 (t) +

·
V 1 (t) dt

)
.

Using the value of γ (t), we obtain:

·
V 1 (t) = −rB2 (B0 − V1 (t))

2 (V1 (t)−B2)
+ rV1 (t) < 0. (11)

To establish the last result, we compare the values of ·
p2(t) in the two cases. Here we

have:
·
p2(t) = − rB2

2 (V1 (t)−B2)
.
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In the benchmark case we had:

·
p2(t) = −(1− p2(t))

rB2

(B1 (t)−B2)
.

Given that V1(t) ≥ B1 and p2(t) ≤ p2(0) <
1
2 , the posterior probability decreases faster

in the benchmark case, so that t2 > tb2.

Proof of Proposition 4
Take an arbitrary line segment of n players and consider all feasible orders in which

those n players can stop. In all the arguments, the players are numbered from 1 to
n from left to right. Denote by nk, k = 0, 1, 2, the number of players that get payoff
Bk in some stopping order (i.e. number of players who have k neighbors at the date
when they stop). Every player eventually stops in each stopping order, so we must have
n0 + n1 + n2 = n.

Our model allows for the possibility that two neighbors stop simultaneously. How-
ever, that is never optimal in terms of total welfare, since by stopping sequentially (even
with a negligible lag between the stopping decisions), the payoff of one of the two players
jumps up from Bk to Bk−1. Therefore, when considering the stopping order that maxi-
mizes the total welfare, we ignore the possibility of simultaneous stopping, and take as
the set of feasible stopping orders the set of permutations of the players in the segment.

We aim to express the total welfare from an arbitrary stopping order (permutation)
as a function of n2. As a first step, we consider all the feasible values of n2 across all
possible stopping orders. We claim that

n2 ∈
{
0, ...,

N − 1

2

}
if n is odd,

n2 ∈
{
0, ...,

N − 2

2

}
if n is even. (12)

To prove this claim, it suffices to note that the smallest possible value n2 = 0 is
trivially obtained in the case of a shrinking network, i.e. in a case where the players stop
in the order 1, 2, 3, ... (or alternatively n, n− 1, n− 2, ...). The largest possible value
for n2 is obtained in any sequence where all the even numbered players stop before the
odd numbered players (i.e. a regular fragmenting). Such a sequence gives n2 = n−1

2 if
n is odd and n2 = n−2

2 if n is even. Any interior value for n2 is obtained, for example,
in a sequence, where the first n2 even numbered players stop first (each of those players
gets B2), and after that all the remaining players stop in an increasing sequence (and
get either B0 or B1 each).
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As a second step, we claim that in any stopping order, we have

n0 = n2 + 1. (13)

We prove this claim by induction. For n = 1 and n = 2, the only feasible values of
n0 and n2 are obviously n0 = 1 and n2 = 0, so (13) holds. Take a line segment of length
n where n = 3, 4, ..., and suppose as an induction hypothesis that (13) holds for all line
segments of length k < n. There are two cases to consider. First, if the first player to
stop in that segment is either player 1 or n (i.e. one of the end nodes), then this player
gets B1 and the line shrinks to length n − 1. By the induction hypothesis, (13) holds
for that reduced line and therefore (13) holds for the original line of length n as well.
Second, if the first player to stop is amongst players 2, ..., n− 1, she gets B2 and the line
segment splits into two shorter line segments of lengths n′ and n′′ with n′ + n′′ = n− 1.
By the induction hypothesis, we have n′

0 = n′
2 + 1 and n′′

0 = n′′
2 + 1, where n′

k and n′′
k

denote the number of players in the two shorter line segments that get payoff Bk. The
total number of players that get B2 is then n2 = 1+ n′

2 + n′′
2 (where 1 is added because

the first player to stop in the original line did get B2) and the total number of players
that get B0 is n0 = n′

0+n′′
0. Combining these equations gives n0 = n2+1 i.e. (13) holds

for the original line segment as well.
As a third step, we claim that in any stopping order, we have

n1 = n− 2n2 − 1. (14)

This follows simply from combining (13) and n = n0 + n1 + n2, and solving for n1.
We can now use (13) and (14) to compute the total welfare in an arbitrary stopping

order as a function of n2:

W (n2) = n0B0 + n1B1 + n2B2

= (n2 + 1)B0 + (N − 2n2 − 1)B1 + n2B2

= B0 + (N − 1)B1 + (B0 +B2 − 2B1)n2.

We can see from this equation that if 2B1 < B0+B2, the total welfare is maximized
by choosing the highest possible value of n2. By (12) this is obtained with regular
fragmenting, where every even numbered player stops first. If 2B1 > B0 +B2, then the
total welfare is maximized by choosing n2 = 0, which is obtained in a shrinking network.

Proof of Proposition 5
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We first derive a formula for the social welfare for a given smoothly declining subsidy
path s (t). As shown in the main text, the induced stopping rate at time t is

γ (t) =
r (B1 + s (t))− ·

s (t)

B0 −B1
. (15)

Note that γ (t) represents the rate at which an arbitrary neighbor of a player stops and
this rate is different from the rate of stopping of a randomly picked player, which is what
we need for the welfare computations. Let us denote the stopping rate of a randomly
picked player by γ̃ (t). To compute it, note that for t > 0, only types k = 1 and k = 2

remain (types k = 0 stop immediately), and the mix of types remains fixed over time in
the case of a shrinking network. Therefore, at any time t > 0, the fraction of types k = 1

in the population is given by q1/ (q1 + q2). A player of type k = 1 may stop within dt

for two reasons. With probability λ (t) dt she stops due to her own randomization and
with probability γ (t) dt her neighbor stops, which turns her into type k = 0 that stops
immediately. Noting that types k = 2 stop at rate zero in equilibrium, we can express
γ̃ (t) in terms of γ (t):

γ̃ (t) =
q1

q1 + q2
(p1λ (t) + γ (t))

=
q1

q1 + q2

(
q1 + 2q2

q1
γ (t) + γ (t)

)
= 2γ (t) .

Since the composition of types remains constant, we can hence express the expectation
(6) for a policy s = {s (t)}∞t=0 as:

W (s) = q0 (B0 − αs0) +∫ ∞

0

(q1
2
B0 +

(q1
2

+ q2

)
B1 − (q1 + q2)αs (t)

)
2γ (t) e−

∫ t
0 2γ(τ)dτe−rtdt,(16)

where s0 := s (0) and where γ (t) is given by (15).
Let us first consider the special case of a permanent subsidy set at level s ≥ 0. Then

we have
γ (t) =

r (B1 + s)

B0 −B1
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for all t ≥ 0, and (16) can be computed explicitly:

W pe (s) = q0B0 +
2 (B1 + s)

B0 +B1 + 2s

(q1
2
B0 +

(q1
2

+ q2

)
B1

)
−αs

(
q0 +

2 (B1 + s)

B0 +B1 + 2s
(q1 + q2)

)
. (17)

It is easy to show by direct computation that W pe (s) is concave in s, and

(W pe)′ (0) > (<) 0

⇐⇒

α < (>) ape,

where
αpe :=

q02B
2
1 + q1

(
B2

0 +B2
1

)
+ q22B0B1 − 2B2

1

(B0 +B1) ((B0 −B1) q0 + 2B1)
> 0.

Since W pe (0) gives the total welfare without any subsidy, this proves result 1 of Propo-
sition 5.

Let us now fix some smoothly declining policy s = {s (t)}∞t=0. Assume that the policy
starts from some positive level s0 = s (0) and then falls continuously to zero in finite time
T so that s (t) > 0 and ·

s (t) < 0 for t < T , and s (t) ≡ 0 for t ≥ T . Also, assume that
the policy hits zero at a slope bounded away from zero, i.e. ·

s (T ) := limt→T
·
s (t) < 0.

Given such a policy s, we next express (16) as a solution to a differential equation. We
first write (16) as

W (s) = q0 (B − αs0) + (q1 + q2)V (s) ,

where

V (s) :=

∫ ∞

0
(B − αs (t)) 2

r (B1 + s (t))− ·
s (t)

B0 −B1
e
−

∫ t
0 2

r(B1+s(t))−·
s(t)

B0−B1
dτ
e−rtdt (18)

and
B :=

q1
2 (q1 + q2)

B0 +
q1 + 2q2
2 (q1 + q2)

B1. (19)

Noting that s (t) is strictly monotonic, we can express (18) as a function of the current
subsidy level s as the state variable. For s ∈ [0, s0], let U (s) denote the continuation
present value of (18) from the moment s−1 (s) where s (t) hits level s (conditional on
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the player not having stopped yet):

U (s) :=

∫ ∞

s−1(s)
(B − αs (t)) 2

r (B1 + s (t))− ·
s (t)

B0 −B1
e
−

∫ t
s−1(s)

2
r(B1+s(t))−·

s(t)
B0−B1

dτ
e−r(t−s−1(s))dt.

Note that with this notation, we have U (s0) = V (s). We will now derive a differential
equation for U (s). Let η (s) denote the steepness of the subsidy policy at t for which
s (t) = s, i.e. η (s) := − ·

s
(
s−1 (s)

)
. Since we have assumed ·

s (t) < 0 for all t ∈ [0, T ], we
have η (s) > 0 for all s ∈ [0, s0]. Decomposing U (s) into instant payoff and continuation
value dt later, we can write:

U (s) = 2
r (B1 + s) + η (s)

B0 −B1
(B − αs) · dt

+

(
1− 2

r (B1 + s (t)) + η (s)

B0 −B1
· dt
)
e−r·dt (U (s)− U ′ (s) η (s) dt

)
.

Rearranging, dividing by dt, and ignoring remaining terms of order dt and higher, this
turns into the following differential equation:

U ′ (s) =
2

B0 −B1

[
− r

η (s)

((
B0 +B1

2
+ s

)
U (s)− (B1 + s) (B − αs)

)
+ (B − αs− U (s))

]
.

(20)
To solve this, we need a boundary condition, obtained by computing the continuation
value after subsidy has declined to zero, i.e. computing (18) for s (t) ≡ ·

s (t) ≡ 0 for all
t:

U (0) =
2BB1

B0 +B1
. (21)

The differential equation (20) coupled with initial condition (21) has a unique solution
U (s) for s ∈ [0, s0]. Noting that V (s) = U (s0), we can express (16) as

W (s) = q0 (B − αs0) + (q1 + q2)U (s0) .

We show next that the solution through (20) implies item 3 of the proposition. Substitute
(19) in (17) to write the value of the permanent subsidy as

W pe (s) = q0 (B0 − αs) + (1− q0)U
pe (s) ,

where
Upe (s) =

2 (B1 + s)

B0 +B1 + 2s
(B − αs) .
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By inspecting (20), we see that the term
((

B0+B1
2 + s

)
U (s)− (B1 + s) (B − αs)

)
mul-

tiplied by −r/η (s) vanishes for U (s) = Upe (s). For any policy where η (s) < 0 for
all s > 0, the solution to (20) gives U (s) > Upe (s). It follows that for any smoothly
declining s satisfying our assumptions, we have W (s) > W pe (s0). Unlike in the main
body of the paper, we have assumed so far that there is a bound T such that s (t) = 0

for t ≥ T . Note, however, that we can approximate arbitrarily closely the welfare of any
policy that declines to zero only asymptotically by some policy that declines to zero in
a finite time, and this means that the conclusion continues to hold for any such policy.
Finally, it is very easy to check that the same conclusion holds for a declining policy
that is bounded away from zero. To see this, let s := inft≥0 s (t) > 0. Then we can make
a simple change of variables, where Bk is replaced by Bk + s, k = 0, 1, 2, so that the
subsidy falls to zero after replacement and the result applies. We can conclude that the
total welfare for any declining policy that starts from some s0 > 0 is higher than the
welfare for a permanent subsidy set at s = s0. This implies result 3 of the Proposition.

Finally, let us consider the choice over all declining policies. We can see from (20)
that there is no optimal solution since for every s > 0, U ′ (s) is maximized by letting
η (s) → ∞ (as long as the term

((
B0+B1

2 + s
)
U (s)− (B1 + s) (B − αs)

)
is positive,

which is the case for any declining subsidy policy). We can, however, analyze the limit
η (s) → ∞ to get an upper bound for the value that can be obtained by any declining
policy. In this limit, (20) reduces to:

U ′ (s) =
2

B0 −B1
[(B − αs− U (s))] .

Using again the boundary condition (21), this has a unique solution:

U sm
∞ (s) : =

(
1− e−

2s
B0−B1

)
B + e−

2s
B0−B1

2B1B

B0 +B1

−
(
s− 1

2
(B0 −B1)

(
1− e

− 2s
B0−B1

))
α. (22)

We now establish that U sm
∞ (s) > U (s) , for all s > 0, where U (s) is a solution of

(20) for some arbitrary positive-value function η (s) which also satisfies (21). Consider
the difference

(U sm
∞ (s)− U (s)) e

s(B0−B1)
2 .
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The derivative of this function with respect to s equals

(
U sm′
∞ (s)− U ′ (s)

)
e

s(B0−B1)
2 +

(B0 −B1)

2
(U sm

∞ (s)− U (s)) e
s(B0−B1)

2

=

(
r

η (s)

((
B0 +B1

2
+ s

)
U (s)− (B1 + s) (B − αs)

))
e

s(B0−B1)
2

=
1(

B0+B1
2 + s

) r

η (s)
(U (s)− Upe (s)) e

s(B0−B1)
2 > 0

for all s, where the last inequality holds because U (s) > Upe (s) for all s > 0. Since
in addition U sm

∞ (0) = U (0) , it follows that U sm
∞ (s) > U (s) for all s > 0. Hence this

gives us a well defined tight upper bound for the welfare that can be obtained by any
declining subsidy path that starts from a given s (0) > s.

With some rearranging we can write the limiting total welfare as:

W sm
∞ (s) = q0 (B0 − αs) + (1− q0)U

sm
∞ (s)

= q0B0 +

((
1− e−

2s
B0−B1

)
+ e−

2s
B0−B1

2B1

B0 +B1

)(q1
2
B0 +

(q1
2

+ q2

)
B1

)
−αs

(
q0 +

(
1− e−

2s
B0−B1

)( 1

1− e
− 2s

B0−B1

− B0 −B1

2s

)
(q1 + q2)

)
, (23)

which is instructive to interpret as a decomposition of (6). Intuitively, we are analyzing
the welfare under a policy that declines ”very” fast from s to zero. Even if this decline
takes a negligibly short time, the players who respond by a hazard rate that scales
linearly in the rate of decline, will adopt with a non-negligible probability before s hits
zero. This probability of ”immediate adoption” is given by the term 1− e−

2s
B0−B1 .18 The

total fraction of players that exit ”immediately” is then q0 +
(
1− e−

2s
B0−B1

)
(q1 + q2).

It is now straightforward to interpret the first line of (23). The term that requires ex-
planation is

((
1− e−

2s
B0−B1

)
+ e−

2s
B0−B1 2B1

B0+B1

)
, which corresponds to Ee−rt(i) for types

k = 1 and k = 2. This is decomposed into two parts since fraction
(
1− e−

2s
B0−B1

)
stop

”immediately”, and the remaining fraction e−
2s

B0−B1 adopt slowly when the subsidy is no
longer in effect, and 2B1

B0+B1
< 1 gives Ee−rt(i) for those players.

The second line of (23) accounts for the financial cost of the policy. Fraction q0 adopt
immediately and induce financial cost αs. The fraction

(
1− e−

2s
B0−B1

)
(q1 + q2) adopt

before s hits zero, but their financial cost is weighted by the term
(

1

1−e
− 2s

B0−B1

− B0−B1
2s

)
.

18This is the probability with which a constant hazard rate ξ · 2s
B0−B1

produces an arrival before time
1/ξ for any ξ > 0 and hence also in the limit ξ → ∞.
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This always takes a value in
(
1
2 , 1
)
, and it captures the expected share of the initial

subsidy level s that a player obtains, conditional on adopting before subsidy becomes
zero. This term reflects another benefit to the regulator of using a declining subsidy:
the realized subsidy payments become lower as time goes on.

We can show by direct computation that W sm
∞ (s) is strictly concave and for every

s > 0, we have W sm
∞ (s) > W pe (s). By direct computation from (23) we get:

(W sm)′ (0) =
(1− q0) 2B

B0 +B1
− αq0.

We see here that
(W sm)′ (0) > 0 ⇔ α <

1− q0
q0

2B

B0 +B1
.

Letting
α∗ :=

1− q0
q0

2B

B0 +B1
,

we have shown that there is an α∗ > αpe such that (W sm
∞ )′ (0) > 0 iff α < α∗. We then

denote
W ∗ = max

s≥0
W sm

∞ (s) .

Hence, for all α < α∗, we can find a declining subsidy that attains social welfare ar-
bitrarily close to W ∗, and so is strictly higher than the welfare without any subsidy.

Proof of Proposition 6
We have to show that

α∗ :=
1− q0
q0

2B

B0 +B1

is increasing in χ. Noting that only q0 and B depend on χ, this amounts to showing
that

1− q0
q0

B

is increasing in χ. We have

q0 = (1− χ)2 ,

q1 = 2χ(1− χ),

q2 = χ2.
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Substituting these in (19) we can write B in terms of χ:

B :=
1− χ

2− χ
B0 +

1

2− χ
B1.

We now get
d

dχ

(
1− q0
q0

B

)
=

B0 (1− χ) +B1 (1 + χ)

(1− χ)3
> 0.

Proof of Proposition 7
We can write the expected social welfare of a subsidy set at s and expiring at rate κ

as:
W ra (s, κ) = q0 (B0 − αs) + (1− q0)V

ra (s, κ) ,

where V ra (s, κ) is the expected social welfare induced by a randomly picked player that
is not type k = 0. Following the same steps as in the proof of Proposition 5, such a
player adopts with rate 2γ (s, κ) as long as the policy is in place, and induces expected
social welfare B − αs at the moment of adoption, where

B :=
q1

2 (q1 + q2)
B0 +

q1 + 2q2
2 (q1 + q2)

B1.

If the subsidy expires before that player adopts, the continuation social welfare is given
by

V c =
2B1B

B0 +B1
.

Hence, we can write:

V ra (s, κ) =

∫ ∞

0
κe−κt

[∫ t

0
2γ (s, κ) e−2γ(s,κ)ue−ru (B − αs) du+ e−rte−2γ(s,κ)tV c

]
dt

=
2γ (s, κ) (B − αs) + κ 2B1B

B0+B1

2γ (s, κ) + κ+ r
=

2 r(B1+s)+κs
B0−B1

(B − αs) + κ 2B1B
B0+B1

2 r(B1+s)+κs
B0−B1

+ κ+ r
.

V ra is strictly increasing in κ and W pe (s, 0) = W pe (s). It is also easy to show that V ra

is strictly concave.
In the limit κ → ∞, we have

W ra
∞ (s) = q0 (B0 − αs) + (q1 + q2)V

ra
∞ (s) ,
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where

V ra
∞ (s) : = lim

κ→∞
V ra (s, κ)

=
1

1 + B0−B1
2s

(B − αs)

+

(
1− 1

1 + B0−B1
2s

)
2B1B

B0 +B1
.

To compare this to W sm
∞ (s), it is instructive to substitute in B to get:

W ra
∞ (s) = q0B0 +

(
1

1 + B0−B1
2s

+
B0−B1

2s

1 + B0−B1
2s

2B1

B0 +B1

)(q1
2
B0 +

(q1
2

+ q2

)
B1

)
−αs

(
q0 +

1

1 + B0−B1
2s

(q1 + q2)

)
. (24)

It is now straightforward to check that W ra
∞ (s) < W sm

∞ (s). Intuitively, there are two
differences between W ra

∞ (s) and W sm
∞ (s). First, the term 1

1+
B0−B1

2s

is the probability of
”immediate adoption” in the case of randomly expiring subsidy, and corresponds to the
term 1− e−

2s
B0−B1 in the case of smoothly declining policy. Since

1

1 + B0−B1
2s

< 1− e−
2s

B0−B1 ,

the fraction of players that adopt immediate is lower in the case of randomly expiring
subsidy. Second, every player that adopts ”immediately” pays the full cost s with the
randomly expiring subsidy, in contrast to the average cost(

1

1− e
− 2s

B0−B1

− B0 −B1

2s

)
s < s

in the case of smoothly declining policy.

Proof of Proposition 8
We show that any constant adoption rate γ implemented by a permanent subsidy s

handed to any adopting agent is also implemented by a restricted permanent subsidy s∗

handed only to adopting type 1 agents, with s∗, with s∗ < s. This will then establish
that the social planner can implement any given constant neighbor adoption rate γ at
lower cost under a neighbor reward policy than under a permanent subsidy.
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For any γ ≥ γ1, the permanent subsidy s required to implement γ is

s = (B0 −B1)
(γ
r

)
−B1 ≥ 0

whereas the restricted subsidy s∗ required to implement the same neighbor adoption
rate γ satisfies

s∗ =
(B0 −B1)

(γ
r

)
−B1

γ
r + 1

=
s (B0 −B1)

s+B0
∈ [0, s) .

These two policies implement an identical joint distribution of adoption rates and types
at the time of adoption. The amount s∗ of the restricted permanent subsidy is lower than
the amount s of the permanent subsidy. Moreover, the restricted permanent subsidy is
paid only to agents who are of type 1 at the time of adoption, unlike the permanent
subsidy, which is also paid to type 0. It follows that the restricted permanent subsidy
s∗ yields a higher social welfare than the permanent subsidy s. Moreover, the restricted
subsidy s∗ is payoff equivalent to the neighbor reward program m, with

m =

(
1 +

p1 (1− p1) (B0 −B1)

(s+B1) (1 + p1) + p21 (B0 −B1)

)
s∗.

In other words, the permanent subsidy s > 0 yields a lower social welfare than the
neighbor reward

m =

(
1 +

p1 (1− p1) (B0 −B1)

(s+B1) (1 + p1) + p21 (B0 −B1)

)
s

s+B0
(B0 −B1) ,

which is an amount in [0, B0 −B1] , since(
1 +

p1 (1− p1) (B0 −B1)

(s+B1) (1 + p1) + p21 (B0 −B1)

)
s

s+B0
≤

(
1 +

p1 (1− p1)B0

s (1 + p1) + p21B0

)
s

s+B0

≤

(
1 +

1
4B0

s

)
s

s+B0

=
s+ 1

4B0

s+B0

≤ 1.
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Appendix B

B1: Informational spillovers
We present a specific model involving informational spillovers across neighbors in

the case of the line. Suppose that the cost of adopting depends on the technique used.
There are two choices to be made when adopting, for instance different organizational
dimensions, a1 ∈ {L,R} and a2 ∈ {L,R}. The state of nature, described by θ = {θ1, θ2}
determines which adoption technique is less costly. Specifically, the cost of adoption is
c = c1 + c2 where ci = cl1ai=θi + ch1ai ̸=θi , i.e. the cost is minimized when the technique
used matches the state. When a player observes her neighbor, with probability 1/2, she
learns perfectly about dimension 1 and with probability 1/2 about dimension 2. What
is learned does not depend on the choice the neighbor actually made, which ensures that
there is no inference made on the information the neighbor’s neighbor held.

In this case

B2 = B − 2
1

2
(cl + ch) = B − (cl + ch),

B1 = B − cl −
1

2
(cl + ch) = B − (

3

2
cl +

1

2
ch),

B0 = B − cl −
1

2
(cl)−

1

4
(cl + ch) = B − (

7

4
cl +

1

4
ch).

So that

B0 −B1 =
1

4
(ch − cl),

B1 −B2 =
1

2
(ch − cl).

In this case we have γ1 > γ2, so that this setup will naturally correspond to the shrinking
network setup.

B2: War of attrition
We present here a more classical version of the war of attrition, adding as in the rest

of the paper the network structure. Firms decide when to exit, where exit is irreversible.
Staying in costs c > 0 per unit of time, but there is no discounting.

Once both neighbors of a firm exit, the remaining isolated firm gets prize B. As in
the rest of the paper, each player only observes whether her neighbors are active or not,
but cannot see the status of any other player in the network.

We show there exists a symmetric equilibrium, characterized by a date t′ > 0 such
that within (0, t′) all those players who have two active neighbors mix, and within (t′,∞)
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there are only players with one active neighbor left (i.e. isolated pairs of players) who
play a standard war of attrition with each other.

Denote by V (t) the value of a player, who has one active neighbor left (so that one
of her two neighbors have exited). We have V (t) > 0 for t ∈ (0, t′) and V (t′) = 0.

Let us denote by γ (t) the hazard rate with which an arbitrary neighbor exits at time
t, where t ∈ (0, t′). For a randomizing player to be indifferent, the benefit of delaying
exit by dt must equate the cost of doing so, i.e. 2γ (t) dtV (t) = cdt, so that

2γ (t)V (t) = c,

or
γ (t) =

c

2V (t)
. (25)

The Bellman equation for the player who has only one neighbor left can be written:

V (t) = γ (t) dtB + (1− γ (t) dt)

(
V (t) +

·
V (t) dt

)
− cdt,

which gives
·
V (t) = −γ (t) (B − V (t)) + c. (26)

Plugging (25) in (26) gives us a differential equation for V (t):

·
V (t) = − cB

2V (t)
+

3

2
c.

Starting with any initial value V (0) such that 0 < V (0) < B
3 this has a solution V (t)

that is decreasing and hits zero at some time point t′.

B3: Generalization with two state variables
In the application to the adoption of technologies, a more general model should keep

track of two state variables:

• a the number of active neighbors

• na the number of inactive neighbors

Types are thus described by (a, na) where a ∈ {0, 1, 2} and na ∈ {0, 1, 2}. A random
member of the network can be of types (2, 0), (1, 0), (1, 1), (0, 2), (0, 1) or (0, 0). In the
model used in the core of the paper, we restrict ourselves to one state variable. The
implicit assumption we make is that a + na = 2, i.e. everyone starts with the same
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number of neighbors, some active and some inactive. Thus in the main part of the
paper there were only three possible types (2, 0), (1, 1), and (0, 2). We now show that
the general pattern is preserved with a slight complication due to the existence of types
(1, 0). Types (0, 2), (0, 1) or (0, 0) do not have any active neighbors and therefore stop
immediately regardless whether they have 0, 1 or 2 inactive neighbors.

As in the main model we introduce some important measures:

γ(1,0) :=
rB2

B1 −B2
,

γ(1,1) :=
rB1

B0 −B1
,

γ(2,0) :=
rB2

2 (B1 −B2)
.

The equivalence between types here and in the model of section 3 implies that γ(1,1) = γ1

and γ(2,0) = γ2. We consider two cases: γ(1,0) > γ(1,1) and γ(1,0) < γ(1,1).

Case 1: γ(1,0) > γ(1,1)

In this case types (1, 0) have the highest incentives to stop. Indeed these types always
have a higher incentive to stop than types (2, 0), since they get the same benefit from
stopping B2, but they get lower benefit of waiting µ(B1 −B2), whereas types (2, 0) get
benefit (2µ(V1 −B2) with V1 > B1). We now describe the evolution of beliefs.

·
p(1,0) (t) = −λ (t) p(1,0) (t)

(
1− p(1,0) (t)

)
< 0.

As time passes, players become less confident that their neighbor is of type (1, 0).
Whereas in section 3 there were two countervailing forces affecting beliefs, here the
second force is not present since types (2, 0), if their other neighbor happens to stop,
will turn into a type (1, 1), not a type (1, 0).

Thus at some date t(1,0) all types (1, 0) will have stopped. We are then back to the
case studied in section 3 with only types (1, 1) and (2, 0). Depending on the relative size
of γ(1,1) := rB1

B0−B1
and γ(2,0) :=

rB2
2(B1−B2)

, we will be either in the case of shrinking or of
fragmenting networks.

Case 2: γ(1,1) > γ(1,0)

Types (1, 1) initially mix. The evolution of beliefs is given by:

·
p(1,1) (t) = −λ (t) p(1,1) (t)

(
1− p(1,1) (t)

)
+ γ(1,1) (t) p(2,0) (t)

= −γ(1,1)
(
1− p(1,1) (t)− p(2,0) (t)

)
< 0
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In this case, as in the case studied in section 3, there are two forces affecting the
belief p(1,1) (t). However, the dominating effect is the evolution of beliefs and as time
passes, active members of the network become less confident that their neighbor is of
type (1, 1). At some date t(1,1), among active members of the networks, only types (1, 0)
and (2, 0) remain. The networks are therefore formed of lines of random sizes with types
(1, 0) at the extremities. Types (1, 0) then have a strictly higher incentive to adopt. As
soon as a type (1, 0) adopts, the neighbor, if he is of type (2, 0), transforms into a type
(1, 1) and thus immediately adopts. Thus stopping by a type (1, 0) creates an immediate
cascade that immediately covers the entire line. It is therefore as if types (1, 0) were
playing a waiting game with no type uncertainty. They therefore mix at rate γ(1,0) and
as soon as one adopts, so does the entire line.

Appendix C: Non-Markovian equilibria

Both in the shrinking and fragmenting network cases, there can be non-Markovian Equi-
libria, where the agents use the realizations of their neighbor’s exit dates as randomiza-
tion devices for their own dates of exit. Importantly, such equilibria are associated with
the same distribution F (t) of dates at which a neighbor stops, and also with the same
hazard rate γ (t) at which a neighbor stops.

Shrinking networks

In the shrinking network case, a simple (and extreme) example of such an equilibrium
is the following. In every component, the two players who start off as types 1 from the
beginning of the game mix at constant rate λ1 (t) = γ1. Type 2 players never stop, unless
one of their neighbors stops, in which case they follow immediately, as soon as they turn
into types 1.

Under these strategies, the belief p1 (t) about a neighbor remains constant equal to
p1 (0) , exactly like in the case of this Markovian equilibrium, but for different reasons.
First, a failure to stop is not informative about a neighbor’s type, since a type 1 or a
type 2 neighbor are equally likely to stop at any given time: a type 1 neighbor, on her
own initiative, and a type 2 in reaction to her other neighbor’s exit. Thus the belief
updating effect is null. Second, a neighbor who was previously a type 2 cannot possibly
have turned into a type 1, otherwise she would have stopped immediately. Thus the
evolving type effect is also absent. Overall, the belief about a neighbor’s type remains
constant.
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In this non-Markovian equilibrium, the distribution of the stopping date of an average
player is exponential with parameter 2γ1

q1+q2q1+q2
, as in the Markovian case. As a result,

the average time before an average member of the network stops is the same as in the
Markovian equilibrium

E [T ] = (q1 + q2)
1

2γ1
.

Note also that the distribution of the stopping date is the same for all agents initially of
type either 1 or 2, since all agents of a given component stop at the same date.

This is different in the Markovian equilibrium. There, the distribution is different for
players who are initially type 1 and the ones who are initially type 2. The distribution
of the stopping date of an agent who is initially of type 1 is also exponential with rate
2(q1+q2)γ1

q1
. For agents who are initially type 2, the stopping date is the sum of two

variables, each of which follows an exponential distribution, the first with rate 2γ1 and
the second with rate 2(q1+q2)γ1

q1
. But the distribution of the stopping date of an average

player is the same in both the Markovian and non-Markovian equilibrium.
The main observable (and testable) difference between the two equilibria is in the

joint distribution of the stopping time profiles. While the non-Markovian equilibrium
example has all the agents exiting at the same date, there is some dispersion of exit
dates in the Markovian equilibrium.19

Fragmenting networks

Fragmenting networks too admit non-Markovian equilibria, but their properties differ
from the Markovian ones even less than in the shrinking case. In one instance of such
an equilibrium, agents who are still active at date t2 and are of type k = 1 at date t2

could choose a stopping date that is an increasing function ϕ of the date at which their
neighbor who stopped prior to t2 did it. For an appropriately chosen function ϕ, this is
an equilibrium.

19It is easy to construct other non-Markovian equilibria. For example, consider all the convex combina-
tions of the Markovian equilibrium and our non-Markovian example. Or equilibria where players play the
Markovian strategy in some set of dates and the non-Markovian example strategy in the complementary
set of dates.
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Appendix D: General uniform subsidy policy that combines
decline and random expiration

We analyze in this Appendix a general uniform subsidy policy s (t) that starts from
some s0, declines smoothly over time and, in addition, expires randomly at a time-
varying hazard rate κ (t). We will show below that adding random expiration cannot
increase welfare when the rate of decline of s (t) is already fast.

Formally, a general uniform policy can be written as s = {s (t) , κ (t)}∞t=0, where s (t)

is a continuously differentiable function with s (t) > 0 and ·
s (t) < 0 for t ≥ 0, and where

κ (t) defines the probability distribution of the date of expiration τ :

Pr (τ ≤ t) = 1− e−
∫ t
0 κ(τ)dτ .

The policy gives a lump sum subsidy payment s (t) to any player that stops at t < τ

(i.e. before the policy expires), while a player that stops at some t ≥ τ gets no subsidy.
In the main text, we derived the equilibrium stopping rate γ (t) separately for the

cases of a declining subsidy (equation (9)) and randomly expiring subsidy (equation
(10)). It is easy to see that a policy that combines both of these elements will give rise
to an equilibrium stopping rate

γ (t) =
r (B1 + s (t))− ·

s (t) + κ (t)

B0 −B1
.

We fix a policy s = {s (t) , κ (t)}∞t=0 and derive the total welfare under it, denoted by
W gen (s), as a solution to a differential equation. We proceed exactly as in the proof
of Proposition 5 and use s (the “current” level of subsidy) as the state variable. As
in that proof, we denote by U (s) the present value of an arbitrarily picked player that
remains in the game at time t > 0 for which s (t) = s. We again let η (s) := − ·

s
(
s−1 (s)

)
denote the steepness of subsidy decline at value s and we let κ (s) := κ

(
s−1 (s)

)
denote

the current expiratory rate at that level (with obvious abuse of notation). By dynamic
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programming, we can then decompose U (s) into instant payoff and continuation value:

U (s) = 2
r (B1 + s) + η (s) + κ (s)

B0 −B1
(B − αs) · dt

+κ (s)
2BB1

B0 +B1
· dt

+

(
1− 2

r (B1 + s) + η (s) + κ (s)

B0 −B1
· dt− κ (s) · dt

)
·e−r·dt (U (s)− U ′ (s) η (s) dt

)
.

Rearranging, dividing by dt, and ignoring remaining terms of order dt and higher, this
turns into the following differential equation:

U ′ (s) η (s) = κ (s)

[
2s

B0 −B1
(B − αs− U (s)) +

2BB1

B0 +B1
− U (s)

]
+2

r (B1 + s) + η (s)

B0 −B1
(B − αs− U (s))− rU (s) . (27)

We again obtain a boundary condition by computing the continuation value after subsidy
has either expired or declined to zero, i.e. computing (18) for s (t) ≡ ·

s (t) ≡ 0 for all t:

U (0) =
2BB1

B0 +B1
.

With this boundary condition, (27) has a unique solution that we denote by Ugen (s) for
s ∈ [0, s0], and the total welfare is then

W gen (s) = q0 (B − αs0) + (q1 + q2)U
gen (s0) .

Since we analyze an arbitrary general policy s, we cannot hope to get an explicit formula
for Ugen (s). Nevertheless, by investigating (27) we can find bounds for the solution.

To analyze the range of values Ugen (s) can take, note first that if we set κ (s) ≡ 0,
the solution to (27) gives the value for some deterministically declining policy. We know
from Proposition 5 that in that case the solution is bounded from above by U sm

∞ (s) and
from below by Upe (s).

We now ask how adding some positive expiration rate κ (s) affects the solution. Note
that the right hand side of (27) is linear in κ (s), and the multiplier of κ (s) is the term
in square brackets:

Ψ :=
2s

B0 −B1
(B − αs− U (s)) +

2BB1

B0 +B1
− U (s) .
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We see that Ψ is linear and decreasing in U (s). By setting U (s) = U sm
∞ (s), where

U sm
∞ (s) is defined in the proof of Proposition 5, we get:

Ψ =

(
e
− 2s

B0−B1 + 2s
B0−B1

e
− 2s

B0−B1 − 1
)
(2B + (B0 +B1)α)

2 (B0 +B1)
< 0.

(To see that this is negative, note that 1− e−x − xe−x > 0 for all x > 0, and hence the
first term in the nominator is negative, while the other terms are positive). This shows
that whenever value U (s) is close to the limiting value under infinitely steeply declining
deterministic policy, the effect of any positive expiration rate is strictly negative. On
the other hand, setting U (s) = Upe (s), where Upe is defined in the proof of Proposition
5, we get:

Ψ =
2sB1 (2B + (B0 +B1)α)

(B0 +B1 + 2s) (B0 +B1)
> 0.

This shows that whenever value U (s) is close to that of a subsidy that remains per-
manently at s, the effect of a positive expiration rate is strictly positive. Hence, the
solution to (27) must lie between Upe (s) and U sm

∞ (s) for all s > 0. This implies that the
total welfare under a general uniform policy remains within the same bounds as under
an arbitrary deterministically declining subsidy policy:

W pe (s0) < W gen (s) < W sm
∞ (s0) .
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