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Abstract

We analyze the optimal investment strategy of a firm that can complete a project

either in one stage at a single freely chosen time point or in incremental steps at

distinct time points. The presence of economies of scale gives rise to the following

trade-off: lumpy investment has a lower total cost, but stepwise investment gives

more flexibility by letting the firm choose the timing individually for each stage.

Our main question is how uncertainty in market development affects this trade-

off. The answer is unambiguous and in contrast with a conventional real-options

intuition: higher uncertainty makes the single-stage investment more attractive

relative to the more flexible stepwise investment strategy.
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1 Introduction

The relationship between economic uncertainty and investment is one of the central

issues in modern capital budgeting, as reflected in the theory of real options (see, e.g.,

d’Halluin et al. (2007), Clark and Easaw (2007), Fontes (2008), Bøckman et al. (2008),

and De Reyck et al. (2008)). The literature on real options emphasizes various forms

of managerial flexibility in this context (see, e.g., Triantis and Hodder (1990) and Tri-

georgis (1996)). On the basis of that literature, we are used to thinking that the value

of flexibility is positively related to the level of uncertainty. For example, the notion

of a positive value of flexibility in an uncertain environment is presented in Chapter

1 of Trigeorgis (1996): “As new information arrives and uncertainty about market

conditions and future cash flows is gradually resolved, management may have valu-

able flexibility to alter its initial operating strategy in order to capitalize on favorable

opportunities.”

In this paper we consider a particular (but common) form of flexibility and provide

a result that calls for a refinement of this view. We analyze a continuous-time model of

investment that follows closely the standard real-options framework. As in McDonald

and Siegel (1986), a firm can choose the optimal time to invest in an irreversible project

whose present value depends on the stochastic market environment. The difference with

the standard model is that, besides the possibility of undertaking the whole project at

a single, freely chosen point in time, the firm can also complete it through incremental

steps. We assume that there are scale economies that give rise to the following trade-

off: completing the investment in a single stage saves on total costs, while proceeding

stepwise gives additional flexibility as the firm can respond to resolving uncertainty by

choosing the investment timing individually for each step.

Concerning the effect of uncertainty on this trade-off, the basic real-options intuition

seems to suggest that uncertainty favors flexibility at the expense of scale economies.

Dixit and Pindyck (1994) devote section 2.5 of their book to this issue and indicate that

it is uncertainty that makes flexibility relevant in the first place: “When the growth

of demand is uncertain, there is a trade-off between scale economies and the flexibility

that is gained by investing more frequently in small increments to capacity as they are

needed”. Yet our main result is the opposite: the higher the level of uncertainty, the

more attractive the lumpy investment strategy relative to the stepwise investment. In

this context, therefore, the payoff of the project being uncertain actually favors scale

economies at the expense of flexibility.
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Figure 1: The timeline of the lumpy and stepwise investments (the top and the bottom

axis in each pair, respectively) with a commitment to undertake stage 1 immediately

(Panel A) and without any constraints on the timing of stage 1 (Panel B).

To understand this seemingly paradoxical result, it is necessary to look beyond a

superficial real-options intuition and to carefully consider what is meant by flexibility

in different contexts. The classical result is that the level of uncertainty is positively

related to the value of an option to undertake an irreversible investment. One may

express this by saying that the option to invest is a flexible asset, and the value of this

flexibility increases with uncertainty (option to invest has a positive vega1). In this

statement, flexibility refers to the presence of an option to choose the investment timing

freely as opposed to a commitment to undertake a particular course of action at a given

moment. Similarly, consider the choice between two investment strategies illustrated

in Figure 1 (Panel A): either invest in the whole project now (lumpy investment) or

1Recall that an option vega is the first-order derivative of the option value with respect to the

volatility of the underlying asset and is positive in a typical case.
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complete a fraction of the project now and keep an option to finish the remaining

fraction later (a flexible alternative). Here flexibility stands for the increased degree

of freedom in adding capacity, when the firm is allowed to do this in two steps rather

than in one lump. We study the relative value of the two investment strategies in

case the project has an uncertain payoff. This uncertainty can be caused, for instance,

by (future) demand being stochastic. Again, higher uncertainty increases the relative

value of flexibility via its impact on the value of the second-stage option. However, this

comparison rests crucially upon the fact that the lumpy investment faces a restriction

on its timing (the implicit now-or-never assumption) and, by construction, cannot

benefit from a higher payoff volatility.

In contrast, the model presented in this paper allows for an optimal timing decision

for both steps of the flexible project without placing any constraints on the timing

of the lumpy project either, as illustrated in Figure 1 (Panel B). So, in this paper

flexibility refers to the possibility of choosing the timing of each step individually as

opposed to the more restrictive case where a single timing decision must apply for the

entire project. This differs from a ”standard” notion of flexibility that refers to the

possibility to choose the timing for a project (or a part of a project) freely as opposed

to the commitment to invest immediately.

Why is it then that the value of flexibility reduces with uncertainty in our setting?

We suggest two intuitions. The first one follows from the theory of option pricing. Both

investment opportunities, the lumpy and the stepwise one, can be viewed as perpetual

American options to acquire the same underlying asset (the final full-scale project).

When uncertainty increases, the values of both options converge towards the value of

the underlying asset. Consequently, the advantage of being able to choose the timing of

each stage separately instead of choosing the timing for both stages jointly diminishes

with uncertainty.

The second intuition builds on the well known insight of real-options theory accord-

ing to which increased uncertainty results in more inertia, that is, a decision maker is

more reluctant to make costly switches between states as a response to changes in the

underlying stochastic variable (cf. the hysteresis effect in the entry-exit model of Dixit

(1989)). Our problem can be viewed as a special kind of a capacity switching problem.

Stepwise investment strategy contains two switches: the first switch increases capacity

from zero level to intermediate level, and a later switch from intermediate to the final

level. Lumpy investment strategy, on the other hand, skips the intermediate level, and

instead switches directly to the full capacity mode, albeit after a longer waiting time.
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As uncertainty is increased, the firm is less willing to incur switching costs, which favors

the lumpy investment strategy.

While our model is stylized, the result relates to many potential applications. As

an example, think of a firm that considers entry into a new market segment and

faces the choice between two alternative strategies: either proceed in multiple stages

(for example, starting with the most profitable geographical market), or wait until

demand has grown enough to justify a single large-scale entry. A related example is

the construction of production capacity: the choice may be between installing one big

unit and installing a number of smaller units. Or, consider the adoption of a new

technology: a firm can either start with an investment in an intermediate technology,

which allows a subsequent implementation of the next-generation technology at a lower

cost, or the firm may save on total costs by waiting and later ”leap-frogging” directly

to the next-generation technology. Our results indicate that, depending on the context,

increased uncertainty favors large-scale entry, large production plants, and technology

leapfrogging.2 Note also that instead of referring to one project to be undertaken in

one or two steps, our framework may just as well be interpreted as two distinct projects

either carried out separately or pooled together at a discounted total cost. A similar

trade-off also appears in the purchase decision of a consumer, who may buy different

goods separately each at its individually optimal time, or purchase them together

at a discounted price. With that interpretation, our results indicate that increased

uncertainty favors bundling of projects and purchases.

Our model is closely related to a number of earlier papers. It has been recognized

elsewhere that the degree of uncertainty influences the firm’s choice between alterna-

tive investment strategies. Dixit (1993) analyzes the choice between mutually exclusive

projects of different sizes, and shows that increased uncertainty favors a larger project.

Related results on the relationship between uncertainty and sizes of investment projects

appear already in Manne (1961), and later in Capozza and Li (1994), Bar-Ilan and

Strange (1999) and Dangl (1999). Décamps et al. (2006), on the other hand, complete

the analysis of Dixit (1993) by considering the state-contingent investment policy over

2In a similar context, Grenadier and Weiss (1997) show in a model with sequential technologi-

cal innovations that increased uncertainty favors waiting until the final technology is invented. The

difference is that in their model uncertainty concerns the arrival time of an improved technology,

whereas in our model it concerns the market environment. Consequently, in their model the improved

technology is adopted at an exogenously determined moment, while in our model the timing is endoge-

nously determined. It should also be noted that Grenadier and Weiss derive their result by numerical

simulations, while our results are derived analytically.
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the entire state space. Their main finding is that the interaction between mutually ex-

clusive options gives rise to a dichotomous option exercise region (a property that holds

also in our model). While their research question is thus entirely different, the model

they use is technically related to ours.3 Another literature stream analyzes investment

strategies in a R&D context (see, e.g., Childs et al. (1998), Weitzman et al. (1981),

Roberts and Weitzman (1981)). That literature, like our paper, highlights the value

of stepwise investment strategies, but its focus is on an entirely different mechanism

than ours. In that context the main advantage of stepwise investment is the additional

information that completing a step generates for choosing subsequent actions. In our

model there is no learning; the advantage is generated by the improved flexibility to

choose investment timings as a response to an exogenously changing environment.

The remainder of the paper is organized as follows. Section 2 describes the model,

while Section 3 derives the optimal investment policy. Section 4 explains how the policy

is affected by the key model parameters, Section 5 discusses some generalizations, and

Section 6 concludes. All proofs are relegated to the Appendix.

2 Model

Our framework is based on the standard model of irreversible investment under un-

certainty as presented in McDonald and Siegel (1986), and further analyzed in a large

number of contributions (an extensive overview of this literature is provided in Dixit

and Pindyck (1994) as well as in Brennan and Trigeorgis (2000)).

Consider a risk-neutral, all-equity financed firm of given size, which operates in

continuous time with an infinite horizon and discounts its revenues with a constant

rate r. (Instead of risk neutrality, we could assume that the payout from the project

can be replicated by a portfolio of traded assets.) The firm earns initially no revenue,

but has an opportunity to invest in a single capital budgeting project. This project

can be accomplished either in one stage (which is referred to as lumpy investment) or

in two separate stages (stepwise investment). The timing of the project and the type

of investment (lumpy vs. stepwise) is to be chosen optimally in order to maximize the

value of the firm.

3The difference is that in their model two projects of different scale are mutually exclusive: the

stepwise investment strategy requires full replacement of the small plant by the large plant. Our model

allows one to proceed to the final ”large” project either through one lump or through incremental

steps with an arbitrary relationship between investment costs of various alternatives.
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Denote by t ∈ [0,∞) the time index. The uncertain payoff of the project is charac-

terized by state variable Yt that follows a geometric Brownian motion:

dYt = μYtdt + σYtdωt, (1)

where Y0 > 0, μ < r, σ > 0, and the dω’s are independently and identically distributed

according to a normal distribution with mean zero and variance dt.

We assume that the initial value Y0 is so low that at time t = 0 it is not yet optimal

for the firm to undertake the project (in neither lumpy nor stepwise fashion). However,

since from (1) we learn that Y is fluctuating over time, with positive probability it will

be optimal for this firm to invest at a later point of time. The fact that the firm

will not invest at time zero will allow us to make our comparisons between various

investment strategies simply on the basis of their respective value functions calculated

at Y0. We think that the assumption of a low initial value for Y is very natural in

the current context: to analyze how uncertainty affects the choice between various

investment strategies, we want to model the conditions under which the investment

becomes optimal for the first time. If the initial value were higher than that, there

should be some reason for why the project has not yet been implemented before the

”initial” time. We recognize, however, that analyzing the whole investment policy

valid for arbitrary initial states would bring in additional aspects (see Décamps et al.

(2006)).

The firm’s revenues are modeled as follows. Initially, the firm generates no revenues.

Once k ∈ {1, 2} stages of the project are completed, the firm earns an instantaneous

revenue flow:

πt = Yt

k∑
i=1

Ri, (2)

where Ri is a constant denoting the deterministic part of the revenue increment corre-

sponding to stage i. Define R ≡ R1+R2. By accomplishing the project in a single step,

the firm moves at some stopping time tL directly from revenue flow 0 to YtLR (lumpy

investment), while by splitting the project, the firm moves first at some stopping time

t1 from 0 to Yt1R1, and at a later stopping time t2 from Yt2R1 to Yt2R (stepwise invest-

ment). The cost of investment is deterministic and depends on whether the project is

accomplished in one or two steps. In case of lumpy investment, the total investment

cost is simply I. In case of stepwise investment, the associated investment costs for

the first and second steps are I1(< I) and I2, respectively. The firm’s optimal strategy

can thus be characterized as the following maximization problem (recall that Y0 is so

low that it is not optimal to invest at t = 0):
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F (Y0) = max {FL (Y0) ; FS (Y0)} = max

⎧⎨⎩sup
tL≥0

E

⎛⎝ ∞∫
tL

e−rtYtRdt − e−rtLI

⎞⎠ ; (3)

sup
t1≥0

E

⎛⎝ sup
t2≥t1

E

⎛⎝ t2∫
t1

e−rtYtR1dt − e−rt1I1 +

∞∫
t2

e−rtYtRdt − e−rt2I2

⎞⎠⎞⎠⎫⎬⎭ ,

where tL, t1, and t2 are stopping times adapted to Yt. The first term in the brackets,

FL (Y0), is the expectation of the discounted future revenues if the lumpy investment is

chosen. Here, the firm chooses the stopping time tL at which the project is undertaken.

The second term, FS (Y0), corresponds to the stepwise investment. Then, the firm

chooses two stopping times, t1 and t2, corresponding to stages 1 and 2 of the project,

respectively. Whether the firm chooses the lumpy or the stepwise alternative depends

on which of the two terms is greater.

We adopt the following assumptions on the investment costs and revenues. First,

we assume that completing the project in two steps is more costly than investing in

one lump and define

κ ≡ (I1 + I2) /I ≥ 1. (4)

Consequently, κ represents the premium for flexibility that the firm must pay in order

to be able to split the project. Second, without loss of generality, we assume that

I1

I2
<

R1

R2
. (5)

As it becomes clear later, this implies that even if we interpret the model so that the

firm is free to choose the order in which the two steps are undertaken, the step that

will be optimally completed first is the one labelled with subscript 1. We only assume

away the trivial case R1

R2
= I1

I2
, which would imply that it is always optimal to undertake

the two steps at the same point of time. In that case the firm does not benefit from

the possibility to split the project, and the lumpy project with no cost premium would

always dominate. (The latter conclusion would also hold if the firm were not able to

first invest in the more profitable stage of project due to, for example, technological

constraints.) Our aim is thus to focus on the effect of uncertainty on the trade-off

between economics of scale and flexibility. To keep the analysis as simple as possible,

we abstract from incorporating elements like operating costs, although we are well

aware that operating costs can influence this trade-off. This is because a single stage

investment will put much stress on the organization with increased operating costs as
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a result. On the other hand, investing stepwise will allow for gradual adaptation of

routines and a gradual build up of internal competence.

To facilitate the communication of our results, we divide the parameters of the

model into two classes. First, parameters μ, σ, and r describe the economic envi-

ronment in which the firm operates, and we call them the market-specific parameters.

Second, the parameters R1, R2, I1, I2, and I describe the project under consideration,

and we call them the project-specific parameters. Our purpose is to show how changes

in market-specific parameters affect the regions in the space of project specific param-

eters in which each of the two alternative investment strategies (lumpy vs. stepwise)

dominates. This approach will provide an unambiguous answer to our main question,

that is, how the degree of uncertainty affects the optimal choice between the stepwise

and lumpy investment and, hence, the relative value of flexibility.

3 Optimal Investment Policy

In this section, we derive the optimal solution to the project selection problem (3) in

three steps. First, we consider the case where only the lumpy investment alternative is

available. Second, we derive the optimal investment policy for the stepwise investment

case. Finally, we consider the general problem where the firm has to decide about both

the timing and the type of investment.

3.1 Lumpy investment

Consider the case in which the project can be undertaken in a single step only. Then

the value of the investment opportunity is the first term between the brackets in (3),

that is, the problem is to choose tL optimally to yield the value FL (Y0):

FL (Y0) = sup
tL≥0

E

⎛⎝ ∞∫
tL

e−rtYtRdt − e−rtLI

⎞⎠ .

This case corresponds exactly to the basic model of investment under uncertainty as

described in McDonald and Siegel (1986). The optimal investment policy is a trigger

strategy such that it is optimal to invest whenever the current value of Y is above a

certain threshold level, which we denote by YL. Thus, the optimal investment time is

tL = inf {t ≥ 0 |Yt ≥ YL}. The standard procedure to solve the problem is to set up the

dynamic programming equation for the value function FL (Y0), where the application
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of Itô’s lemma and appropriate boundary conditions are used to determine the exact

form of FL (Y0) and the value of YL. We merely state the result here, see e.g. Dixit

and Pindyck (1994) for details. The investment threshold is

YL =
β

β − 1

I

R
(r − μ) , (6)

where

β =
1

2
− μ

σ2
+

√(
1

2
− μ

σ2

)2

+
2r

σ2
> 1, (7)

and the value of the option to invest is

FL (Y0) =

(
YLR

r − μ
− I

)(
Y0

YL

)β

. (8)

Expression (8) is valid when initial demand is so low that it is not optimal to invest

right away, that is when Y0 < YL.

3.2 Stepwise investment

Now, consider the case in which the firm splits the project into two stages. Then the

value of the investment opportunity is the second term between the brackets in (3),

that is, the problem is to choose t1 and t2 optimally to yield the value FS (Y0):

FS (Y0) = sup
t1≥0

E

⎛⎝ sup
t2≥t1

E

⎛⎝ t2∫
t1

e−rtR1dt − e−rt1I1 +

∞∫
t2

e−rtRdt − e−rt2I2

⎞⎠⎞⎠ . (9)

The option to invest in the first stage may be seen as a compound option, since ac-

complishing it generates an option to proceed to the next stage.4 However, since the

instantaneous revenue (2) is additive in the revenue flows associated with each stage,

the problem can be represented as two separate investment problems. This can be seen

by re-writing (9) as

FS (Y0) = sup
t1≥0

E

⎛⎝ ∞∫
t1

e−rtR1dt − e−rt1I1

⎞⎠+ sup
t2≥t1

E

⎛⎝ ∞∫
t2

e−rtR2dt − e−rt2I2

⎞⎠ . (10)

Expression (10) implies that the problem is decomposed into two stopping problems,

which are only linked through the constraint t2 ≥ t1. For the moment, ignore this

4See Bar-Ilan and Strange (1998) for a more complex model of sequential investment that incor-

porates investment lags.
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constraint, and note that each of the two resulting problems is identical to the one

considered in Section 3.1. Therefore, without constraint t2 ≥ t1, the solution must

consist of two investment thresholds, Y1 and Y2, given by

Y1 =
β

β − 1

I1

R1
(r − μ) , (11)

Y2 =
β

β − 1

I2

R2

(r − μ) . (12)

Comparing these expressions, one can see immediately that Y1 < Y2 under our

assumption that R1

R2
> I1

I2
. Therefore, concerning the corresponding stopping times

ti = inf {t ≥ 0 |Yt ≥ Yi} , i ∈ {1, 2}, it must hold that t2 > t1, which means that

the constraint t2 ≥ t1 is automatically satisfied. We conclude that the first stage is

accomplished strictly earlier than the second stage, and that the existence of stage 2

has no effect on the optimal exercise time of stage 1, meaning that the two stages can

be considered separately.5 We denote the values of the options to invest separately for

the two stages as F1 (Y0) and F2 (Y0). Analogously to (8), these can be written as

F1 (Y ) =

(
Y1R1

r − μ
− I1

)(
Y0

Y1

)β

, (13)

F2 (Y ) =

(
Y2R2

r − μ
− I2

)(
Y0

Y2

)β

, (14)

and they are applicable for Y0 < Y1 and Y0 < Y2, respectively. The value of the

(compound) option to invest sequentially can be written as:

FS (Y0) = F1 (Y0) + F2 (Y0) =

(
Y1R1

r − μ
− I1

)(
Y0

Y1

)β

+

(
Y2R2

r − μ
− I2

)(
Y0

Y2

)β

, (15)

which is again valid as long as Y0 is low enough, in particular, when Y0 < Y1.

3.3 General problem

So far, we have determined the option values and the optimal investment thresholds

for the two investment strategies (lumpy and stepwise) separately. Now we consider

the general problem (3). Since we have assumed that the initial value Y0 is so low

5This result is due to the special structure of optimal stopping problems that also underlies the

main conclusions of Leahy (1993) and Baldursson and Karatzas (1997), according to which an investor,

who must take into account subsequent investments of the competitors, employs the same investment

policy as a monopolist who is not threatened by such future events.
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that it is not optimal to undertake the project (in any mode) at t = 0, the value of

the firm is simply F (Y0) = max {FL (Y0) ; FS (Y0)}, where the expressions for FL (Y0)

and FS (Y0) are given by (8) and (15), respectively. Our aim is to establish conditions

that determine which of these expressions is greater. Since we are interested in the

trade-off between the economies of scale and flexibility, we want to state the relation

of the option values in terms of the parameter κ that represents the cost premium that

must be paid by the firm for the flexibility of splitting the investment.

The following proposition states that there is a single cut-off value such that if κ

is below that level, the option value corresponding to the stepwise investment strategy

dominates that of lumpy investment, while the reverse is true for κ above that level.

Note that a similar interpretation of the domination relation of mutually exclusive

options is implicitly adopted, for example, in Dixit (1993).

Proposition 1 Let Y0 < Y1. There exists a critical level of the investment cost pre-

mium κ̂ > 1 such that when κ = κ̂, we have FS (Y0) = FL (Y0), that is, the lumpy

and stepwise investment strategies are equally good. The critical premium κ̂ can be

expressed as follows:

κ̂ =
[
γΠβ−1

1 + (1 − γ) Πβ−1
2

] 1
β−1

, (16)

where

γ ≡ R1

R
(17)

is the fraction of the payoff of the project generated after completing stage 1, and

Πi ≡ Ri/Ii

R/ (I1 + I2)
(18)

is the relative profitability of (moneyness of the option associated with) stage i. For

κ < κ̂, we have FS (Y0) > FL (Y0), whereas for κ > κ̂, we have FL (Y0) > FS (Y0).

Proof. See the Appendix.

Proposition 1 gives us an unambiguous dominance relation between the lumpy and

stepwise investment. Note that κ̂ depends on the market-specific parameters μ, σ,

and r through their effect on parameter β only. Hence, β aggregates the effect of the

environment in which the firm operates on the choice between the lumpy and stepwise

investment strategies.

The influence of the project-specific factors is captured by three parameters: the

fraction of the total payoff from the project that can be attributed to the stage 1

investment, γ, and the profitability of each stage relative to the profitability of the
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project as a whole, Πi. This profitability can also be directly interpreted as the relative

moneyness of the option to invest in stage i.

4 Effect of Uncertainty

Our main objective is to show how the choice between lumpy and stepwise invest-

ment strategies depends on market-specific parameters. An increase (a decrease) in

κ̂ is equivalent to a reduction (an expansion) of the set of project-specific parameter

values under which the lumpy investment dominates (is dominated by) the stepwise

investment. This leads to the interpretation that κ̂ represents the cost advantage of the

lumpy investment required to compensate for the loss of flexibility in timing each step

of the project separately. Thus, an increase (a decrease) in κ̂ is equivalent to a higher

(lower) relative value of additional flexibility associated with stepwise investment.

From (16), we see that β captures the effects of all market-specific parameters. The

next proposition states our main result:

Proposition 2 Consider the critical cost premium κ̂ as a function of β. Then, the

following relationship holds:
∂κ̂

∂β
> 0.

This implies that the relative value of stepwise investment is negatively related to

the volatility and to the drift rate of process (1), but positively related to the interest

rate:

∂κ̂

∂σ
< 0, (19)

∂κ̂

∂μ
< 0, (20)

∂κ̂

∂r
> 0. (21)

Proof. See the Appendix.

Equation (19) embodies the main result of this paper: increased uncertainty reduces

the premium that the firm is willing to pay for the additional flexibility that the stepwise

investment gives. The effects of the drift rate and interest rate, as given by (20) and

(21) respectively, are less surprising, but they are nevertheless revealing. The intuition

for (20) is that if the rate at which the present value of the project grows is reduced (μ

is reduced), the cost of delaying investment until it is optimal to undertake both stages
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together is increased, which makes the stepwise investment more attractive. This is

quite obvious, but it completes our main argument: it is rather the fact that the growth

is gradual (slow) that makes stepwise investment valuable in this context, not the fact

that growth is uncertain. Of course, the effect of the interest rate, as expressed in

(21), can be explained in a similar way: discounting revenues more heavily makes it

more costly to delay investment until both stages are optimally undertaken together.

Therefore, the relative value of stepwise investment is higher.

To understand the main result given in (19), it is helpful to use the following

analogy. First, notice that (16) can be rearranged as:

κ̂β−1 = γΠβ−1
1 + (1 − γ)Πβ−1

2 . (22)

The left-hand side reflects the premium on the investment cost when selecting the step-

wise investment, whereas the right-hand side is the benefit from timing the investment

in each stage of the project optimally. The cutoff level of the premium, κ̂, can be there-

fore interpreted as the certainty equivalent of random payout Πi, i ∈ {1, 2}, (occurring

with probability γ and 1− γ), when the utility function is of the form u(x) = xβ−1. It

is straightforward to see that the certainty equivalent decreases with the concavity of

the utility function. In the analyzed case, the latter is negatively related to β.

It is useful to think of our main result in yet another way. For κ = 1 and finite

σ, the value of the lumpy investment opportunity is always smaller than the value

of the option to invest in a stepwise fashion (cf. (8) and (15)). When uncertainty

tends to infinity, the values of both investment opportunities converge to the value

of the underlying asset, that is, the present value of revenues generated in perpetuity

by the full-scale project. (In fact, it is easy to show that the limit of (8) and (15)

for σ tending to infinity is equal to Y R/(r − μ).) Therefore, it is not surprising that

for higher uncertainty the willingness to pay a premium for the ability to invest in a

stepwise fashion is lower. (For a discussion of the limiting properties of κ̂ as volatility

tends to infinity and zero, see the supplementary web appendix.)

Figure 2 provides a numerical illustration of the model. It depicts the relationship

between the cut-off level of the flexibility premium, κ̂ and the volatility of the revenue

flow, σ, with the following parameter values. The riskless interest rate is assumed

to be 5% (which is approximately equal to the average yield on long-term treasury

bonds based on the period 1926-99, as reported in Bodie et al. (2002)) and the drift

rate of the project is assumed to be equal to 1.5% (implying a 3.5% return shortfall,

which is approximately consistent with a long-term dividend yield as reported by Allen
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Figure 2: Flexibility premium cut-off level, κ̂, as a function of payoff volatility, σ, for

different proportions of the payoff generated by stage 1, γ. Other parameter values are

as follows: α = 0.5, r = 0.05, and μ = 0.015.

and Michaely (2002)). The proportion of the total investment cost incurred in each

stage is one half (α = 0.5). Consistent with the results of our model, we can see

that the relationship between project flexibility (measured by κ̂) and uncertainty (σ)

is negative. Assuming that I = $100, and that between three and four fifths of the

revenue is generated following the completion of stage 1, the maximum amount that

the firm is willing to pay for flexibility ranges between $6 and $46 in the case of no

uncertainty, and between $3 and $32 for σ = 0.2 (the latter corresponds to the standard

deviation of equity returns of a representative S&P 500 firm, see Bodie et al. (2002)).

5 Extensions

Admittedly, the model is very simple and it is not obvious to what extent our main

result is driven by the current specification of the project’s payoff. For example, one

might suspect that if, instead of a linear dependence like in our basic model, the

project value is concave in the stochastic payoff Yt, then the sign of the relationship

between uncertainty and the value of flexibility will be reversed. This could be the

case if the effect of a higher upside potential associated with a higher payoff volatility

was dominated by its decreasing marginal contribution to the present value of the
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project. On the other hand, the notion of project flexibility is often associated with

the possibility to revise investment decisions frequently (Trigeorgis (1996)), rather than

merely adding a second step to an indivisible investment project. To deal with these

issues, this section extends our result by considering a more general, power specification

of the revenue function and by allowing for an arbitrary number of steps for which the

timing can be independently chosen.

To account for a nonlinear impact of the market environment on the present value

of the project, we allow the revenue flow to have a power specification (cf. (2)):

πt =

(
Yt

n∑
i=1

Ri

)θ

, θ ∈ (0, β) , (23)

with θ < β required for obtaining finite valuations. For θ < 1, the firm is facing a

concave revenue function, which may reflect, for example, constraints on input avail-

ability or, to some extent, imperfect hedging opportunities of risk averse shareholders.

The case of θ > 1 may arise because of the firm’s ability to respond to uncertainty, for

example, by changing both price and quantity in response to demand fluctuations. In

particular, one could think of a monopolist facing an isoelastic inverse demand function

pt = Ytq
−1/θ
t (pt is price, qt is quantity). Assuming that the firm has constant marginal

production cost ci, and no capacity constraint, the revenue flow with optimally chosen

output level is given by πt = Y θc1−θ
i θ−1

(
1 − 1

θ

)θ−1
, which is the same as (23) with

an appropriately defined correspondence between Ri and ci. In that case, investment

outlays should be interpreted as adoptions of different technologies that allow different

marginal production costs ci.

Adopting the payoff function (23) with n = 2 instead of (2) is in fact equivalent to

transforming the stochastic process from Y to Y θ (with the relabeling of the parameters

R1 and R2 as R′
1 ≡ Rθ

1 and R′
2 ≡ Rθ − Rθ

1). Hence, the way to see that the results

of Sections 3 and 4 generalize to the power function is to observe that Y θ also follows

a geometric Brownian motion but just with different drift and volatility terms than

the original process Y . In fact, one can show (by applying Itô’s lemma) that if Y

follows (1), the process Y θ is a geometric Brownian motion with drift and volatility

terms equal to μ′ = θμ + 1
2
θ (θ − 1) σ2 and σ′ = θσ, respectively. Hence, we may write

β ′ = 1
2
− μ′

σ′2 +

√(
1
2
− μ′

σ′2
)2

+ 2r
σ′2 = β

θ
. The condition θ < β ensures that μ′ < r, that

is, that all the relevant valuations are finite.

In order to incorporate the notion that project flexibility is equivalent to the pos-

sibility of revising investment decisions frequently (Trigeorgis (1996)), we consider the
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optimal capital budgeting strategy when the firm is able to split the project into an

arbitrary number of stages. The instantaneous revenue flow is now given by (23) with

n ≥ 2.

Define

Sk ≡
k∑

i=0

Ri (24)

for k > 0, with R0 ≡ 0. In order to ensure that an investor chooses to accomplish stage

k at a strictly earlier time than stage k + 1, we must have

Ik

Ik+1

<
Sθ

k − Sθ
k−1

Sθ
k+1 − Sθ

k

≡ R′
k

R′
k+1

, ∀ k < n. (25)

Now, it is possible to generalize the formula for the cut-off value of the flexibility

premium (see the supplementary web appendix):

κ̂ =

(
n∑

i=1

γ′
iΠ

′β
θ
−1

i

) 1
β
θ
−1

, (26)

where γ′
i ≡ R′

i/R
′ and Π′ is defined in the same way as Π with R (Ri) replaced by R′

(R′
i). The proof that κ̂ increases with β, thus decreases with σ is now analogous to the

proof of Proposition 2.

To provide an illustration, Figure 3 depicts the cut-off level of the flexibility pre-

mium as a function of payoff convexity θ for different values of n. The cut-off level κ̂

decreases with the convexity of the revenue function. This implies that a firm holding

a project with a more concave payoff function will, in fact, be willing to incur a higher

additional costs to preserve flexibility in the investment process. The intuition for that

result is that concavity increases the relative value of the initial stages of the project.

This effect increases the value of the sequential strategy relative to the lumpy invest-

ment, simply because the stepwise strategy makes it possible to undertake the (more

profitable) initial stages only. Furthermore, consistent with intuition, the value of the

project flexibility is higher for a larger number of stages. For I = $100, γi = 1.5γi+1

and αi = 1/n, the maximum level of flexibility premium ranges between $40 and $117

for a concave (θ = 0.5), $3 and $17 for a linear (θ = 1), and between less than $1 and

$6 for a convex payoff (θ = 1.25).

6 Conclusion

We analyze the optimal investment strategy of a firm that can either accomplish the

project in one lump or proceed in steps. The former strategy has the advantage of
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Figure 3: Flexibility premium cut-off level, κ̂, as a function of payoff convexity, θ,

for different numbers of stages, n. Other parameter values are as follows: α = 0.5,

γi/γi+1 = 1.5, r = 0.05, μ = 0.015, and σ = 0.2.

scale economies: the total investment cost is lower. The latter benefits from additional

flexibility: the timing of each step can be chosen independently of each other. Our

focus is on the effect of uncertainty on the trade-off between the two strategies. The

result is that increased uncertainty favors the lumpy investment relative to the stepwise

investment.

One way to express our main result is to say that increased uncertainty reduces the

value of flexibility associated with stepwise investment. This is in contrast with the

standard real-options intuition, which says that increased uncertainty typically favors

flexibility. Our key message is that such a statement – that is, uncertainty favors

managerial flexibility – is not to be taken as a general fact. In particular, one must be

careful in specifying what is meant by flexibility. If flexibility refers to the presence of

an option to act later as opposed to the commitment to act now, then the standard

result certainly holds: the value of flexibility increases with uncertainty. But if, as we

show in this paper, flexibility refers to the possibility to split a project into a number

of steps and to choose the timing of each step individually, then we have the opposite

result: increased uncertainty reduces the value of flexibility.

18



A Appendix

Proof of Proposition 1. We begin by comparing the two option values FL (Y ) and

FS (Y ). It holds (cf. (8) and (15)) that

FS (Y )

FL (Y )
=

(
Y1R1

r−μ
− I1

)(
Y
Y1

)β

+
(

Y2R2

r−μ
− I2

)(
Y
Y2

)β

(
YLR
r−μ

− I
)(

Y
YL

)β

= R−β

(
I1 + I2

κ

)β−1
(

Rβ
1

Iβ−1
1

+
Rβ

2

Iβ−1
2

)
, (A.1)

since I1+I2 ≡ κI, and investment thresholds YL, Y1, and Y2, are given by (6), (11), and

(12), respectively. Equation (16) follows directly from (A.1). Since β is always greater

than 1, and all terms in (A.1) are positive, it holds that ∂
∂κ

(
FS(Y )
FL(Y )

)
< 0. This implies

that FS(Y )
FL(Y )

= 1 if and only if κ = κ̂ and that the inequalities stated in the proposition

hold.

Now, in order to prove that κ̂ > 1, we show that the FS (Y ) > FL (Y ) for κ = 1.

Recall that α and γ are defined (for an arbitrary κ) as

I1 ≡ αIκ, (A.2)

R1 ≡ γR. (A.3)

Of course, (A.2) and (A.3) imply that I2 = (1 − α) Iκ and R2 = (1 − γ) R. Define

D (β) ≡
(

γβ

αβ−1
+

(1 − γ)β

(1 − α)β−1

)
, (A.4)

which equals the ratio of FS (Y ) and FL (Y ) for κ = 1. It can easily be seen that lim
β→1

D (β) = 1. To show that D (β) > 1 for β > 1, we calculate the following derivative

∂D (β)

∂β
=

∂

∂β

(
γβ

αβ−1
+

(1 − γ)β

(1 − α)β−1

)
(A.5)

= γ
(γ

α

)β−1

ln
γ

α
+ (1 − γ)

(
1 − γ

1 − α

)β−1

ln
1 − γ

1 − α
.

For γ ↓ α, (A.5) is equal to zero. Therefore, in order to prove that (A.5) is positive, it

is sufficient to show that

∂

∂γ

[
γ
(γ

α

)β−1

ln
γ

α
+ (1 − γ)

(
1 − γ

1 − α

)β−1

ln
1 − γ

1 − α

]
(A.6)
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is positive. Differentiating (A.6) and rearranging yields

(γ

α

)β−1

β ln
γ

α
−
(

1 − γ

1 − α

)β−1

β ln
1 − γ

1 − α
+
(γ

α

)β−1

−
(

1 − γ

1 − α

)β−1

> 0.

The last inequality results from the fact that the first three components are positive

and that γ
α

> 1 > 1−γ
1−α

. Consequently, for κ = 1 and β > 1, the value of the sequential

investment opportunity is higher than the value of the lumpy project. Since (A.1)

decreases with κ, κ̂ is greater than 1.

Proof of Proposition 2. κ̂ can be expressed as

κ̂ =
(
γΠβ−1

1 + (1 − γ) Πβ−1
2

) 1
β−1

. (A.7)

Let us choose two arbitrary values of β, say β ′ and β ′′, such that β ′ > β ′′, and define

δ ≡ β ′ − 1

β ′′ − 1
> 1.

It holds that

γΠβ′′−1
1 + (1 − γ) Πβ′′−1

2 = γΠ
β′−1

δ
1 + (1 − γ) Π

β′−1
δ

2

<
(
γΠβ′−1

1 + (1 − γ)Πβ′−1
2

) 1
δ
,

where the last inequality results from the fact that y
1
δ is a concave function. This

implies the following inequality:(
γΠβ′′−1

2 + (1 − γ)Πβ′′−1
2

)δ

< γΠβ′−1
1 + (1 − γ) Πβ′−1

2 .

It follows immediately that(
γΠβ′′−1

1 + (1 − γ) Πβ′′−1
2

) 1
β′′−1

<
(
γΠβ′−1

1 + (1 − γ) Πβ′−1
2

) 1
β′−1

.

Defining β ′ ≡ β ′′ + Δβ1 and letting Δβ tend to zero leads to the conclusion that

∂κ̂/∂β > 0. Results (19)-(21) follow from the fact that ∂β/∂σ < 0, ∂β/∂μ < 0, and

∂β/∂r > 0, respectively.
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B Supplementary web appendix

Some limiting cases.

To shed more light on the behavior of κ̂ as a function of volatility, we calculate its

limits for σ → ∞ and σ → 0. It holds that (see below for the proofs)

lim
σ→∞

κ̂ = Πγ
1Π

1−γ
2 , (B.1)

and

lim
σ→0

κ̂ =

⎧⎪⎨⎪⎩
Π1 μ ≤ 0,[
γΠ

r−μ
μ

1 + (1 − γ)Π
r−μ

μ

2

] μ
r−μ

μ > 0.
(B.2)

In an extremely uncertain market (σ → ∞), the cutoff level of the flexibility premium

is equal to the geometric weighted average of the relative profitabilities of the two

stages of the project. Conversely, for a deterministic demand process (σ → 0), two

cases are possible. If the drift rate μ of the demand process is non-positive, the cutoff

level of the flexibility premium is equal to the maximum of the relative profitabilities

of stages 1 and 2 (which is Π1 by assumption (5)). For a strictly positive μ, κ̂ is given

by (16) where β admits its limiting value for σ → 0.

To interpret the meaning of the deterministic limit of κ̂ for μ ≤ 0, consider two

cases – of a negative and of a zero NPV of the lumpy project. If the NPV of the

whole (lumpy) project is negative (that is, if Y R/(r − μ) − I < 0), then the firm will

be indifferent between having the lumpy project and being able to invest sequentially

with a flexibility premium equal to Π1. In both cases, no investment will be made and

the value of the firm is zero. In the special case of a zero NPV of the lumpy project,

stepwise investment strictly dominates the lumpy one as long as κ < κ̂ = Π1. Then,

the first step of the stepwise investment yields a strictly positive NPV and the second

step is abandoned. The strictly positive sign of the first step is concluded by observing

that

NPV1 =
Y R1

r − μ
− I1 = γ

(
Y R

r − μ
− κ

Π1
I

)
.

Obviously, this is greater than zero as long as κ < Π1.
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Proof of (B.1) and (B.2). First, we prove (B.1).

lim
σ→∞

κ̂ = lim
σ→∞

[
γΠβ−1

1 + (1 − γ)Πβ−1
2

] 1
β−1

= exp

⎡⎣ lim
σ→∞

log
[
γΠβ−1

1 + (1 − γ)Πβ−1
2

]
β − 1

⎤⎦
= exp

[
lim

σ→∞
γΠβ−1

1 log Π1 + (1 − γ) Πβ−1
2 log Π2

γΠβ−1
1 + (1 − γ) Πβ−1

2

]
= eγ log Π1+(1−γ) log Π2

= Πγ
1Π

1−γ
2 .

To prove (B.2), we first use the known property that lim
σ→0

β equals infinity for μ ≤ 0

and r/μ otherwise (Dixit and Pindyck (1994)). Consequently, in the latter case the

limit of κ̂ equals (16) with β replaced by r/μ. In the case of negative drift rate μ, we

use the three-series theorem (recall that Π1 > Π2). It holds that

γΠβ−1
1 + (1 − γ) Πβ−1

2 > γΠβ−1
1[

γΠβ−1
1 + (1 − γ) Πβ−1

2

] 1
β−1

> γ
1

β−1 Π1,

and

γΠβ−1
1 + (1 − γ) Πβ−1

1 > γΠβ−1
1 + (1 − γ) Πβ−1

2

Π1 >
[
γΠβ−1

1 + (1 − γ) Πβ−1
2

] 1
β−1

.

Therefore

Π1 >
[
γΠβ−1

1 + (1 − γ)Πβ−1
2

] 1
β−1

> γ
1

β−1 Π1. (B.3)

Since

lim
σ→0

γ
1

β−1Π1 = Π1, (B.4)

it is also true that

lim
σ→0

κ̂ = Π1. (B.5)

Investment thresholds and κ̂ for general θ.

With the payoff function (23), condition (5) is replaced by

I1

I2

<
Rθ

1

Rθ − Rθ
1

≡ R′
1

R′
2

, (B.6)

2



where we introduce the notation R′
1+R′

2 ≡ R′ = Rθ (for n > 2, (5) is replaced by (25)).

This condition ensures that if the firm chooses the sequential investment strategy, the

stage labeled with subscript 1 is optimally undertaken strictly before stage 2. Before

we proceed to analyzing the investment decision(s) of the firm, it is useful to establish

the following present value:

E

⎛⎝ ∞∫
t

e−rtY θ
t dt

⎞⎠ =
Y θ

t

r − θμ − 1
2
θ (θ − 1)σ2

≡ Y θ
t

δ(θ)
. (B.7)

Since for x > 0 condition δ(x) > 0 is equivalent to x < β (note that β, given by

(7), is the positive root of the quadratic equation in the denominator of (B.7)), the

convergence of the present value of the project revenues requires that θ < β. Obviously,

for linear and concave payoff functions this condition is always satisfied.

The option value of the project under the lumpy investment strategy is

FL (Y ) = sup
tL≥0

E

⎛⎝ ∞∫
tL

e−rtY θ
t R′dt − Ie−rtL

⎞⎠ . (B.8)

The resulting optimal investment threshold, YL, equals

YL =
1

R

(
β

β − θ
Iδ(θ)

) 1
θ

, (B.9)

with the required mark-up on the investment cost now being equal to β/(β−θ), which

increases with the payoff convexity. The value of the project can now be expressed as

FL (Y ) =

(
Y θ

LR′

δ(θ)
− I

)(
Y

YL

)β

. (B.10)

For θ = 1, (B.10) reduces to (8).

Analogously to (15), the value of the option to invest sequentially is

FS (Y ) = F1 (Y ) + F2 (Y ) =

(
Y θ

1 R′
1

δ(θ)
− I1

)(
Y

Y1

)β

+

(
Y θ

2 R′
2

δ(θ)
− I2

)(
Y

Y2

)β

, (B.11)

where

Yi =

(
β

β − θ

Ii

R′
i

δ(θ)

) 1
θ

, (B.12)

for i ∈ {1, 2} (for n > 2, thresholds have an identical form). Now, we are able to derive

the cut-off premium for flexibility

κ̂ =

(
γ′Π

′β
θ
−1

1 + (1 − γ′)Π
′β
θ
−1

2

) 1
β
θ
−1

, (B.13)

where γ′ and Π′
i are defined in an analogous way as in Proposition 1.
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